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NLP and Al: Neural and Symbolic Approaches

State of the Art: Neural NLP

» Neural networks (deep learning) have replaced symbolic and statistical approaches to
NLP and Al. NLP is the “hottest area of Al" (stateof.ai 2020).

Pros: Human and super-human performance

» Unprecedented degree of accuracy on many NLP and Al tasks (end-to-end learning).
Tasks that require high level cognitive ability can be successfully automated.

Cons: Large back box models

* Deep neural NLP models have grown to astronomical sizes (10ll parameters) raising
issues of amount of training data required, computing and cost (vs. 0.1% parameters)

* Ethics of Al issues such as bias, privacy, fairness, risk, transparency, and accountability,
all of which require model interpretability and prediction explainability.

» Data modeling, data governance and model risk management.

Hybrid Neuro-Symbolic Al / NLP
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Outline

1. Words, symbols, sequences and vector spaces
2. The NLP pipeline

3. Language models

4. Neural NLP

5. Neuro-symbolic systems

Conclusion
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Words, symbols, sequences & vector spaces

e \Vocabulary: (finite) set of words (tokens, symbols, graphemes, “forms”) Vector Models for IR
e \Vocabulary V: 10,000s to millions of word forms (inflection, compound) Boolean Model
e Discrete symbol representation (label, integer, one-hot binary vector)

Doc V, [ojojopp[1lo[1]o[1]o[o]t]o[ojo[o[o[ojojo[o]

e Language: set of sentences or documents (sequences of words); n-grams Doc V, [plojololo[1of1]o[1]o[o t]o[o[oo[o[ofo[o]o]
e Complexity: for vocabulary V of size | ‘Tsl , ’fhere are |V |" n-grams SRR S ondVode] Tlrmi{ ‘S"t’grrlf
e forn=3, | V| = 100,000, there are 10" trigrams Special compounds

Doc \]1 |1-0b-5|4-6|0-1b-0b~0| ....................... |
e \ector spaces: technique for word, document and meaning representation Doc V, [0.00.000.00.1 5000 ~+rrrreerreeeeeees |
e Dbinary/discrete/continuous vectors; sparse/dense

SMART vectors are composed of real valued Term weights
NOT simply Boolean Term Present or NOT

e Examples:
e Indexing/search: Salton SMART system, 1972
e Document representation: Bag of Words (BoW): Binary, Count, TF-IDF
e Word, sentence and document representation as fixed-length
continuous dense vectors (word2vec, GloVe, doc2vec, etc.)

D . i
Vocabulary and documents
Real-valued vector of dimension d

d << |V|, independent of |V|
word2vec, GloVe (d = 50, 100, 300)
Word/document similarity measures
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The NLP pipeline

Base NLP Tasks NLP Pipeline

e Tokenization, Tagging, Chunking, Parsing ° Text-.feastlg:it\fg;or:zers

e Core NLP, NLTK, spaCy, HuggingFace

Applications
e Search, Classification, Information extraction e Symbolic NLP: Higher-level analysis _
(KG), Text generation, Transcription, Translation, e Parsing, logical form, semantics/SLR, discourse

Question answering, Dialog, Chatbots, Reasoning e Neural NLP: Fixed-length vector representations

e Output classifier or decoder (seq2seq)
e e.g., Text classification: Logistic classifier
e End of parsing with neural NLP?
# spaCy NLP Pipeline
# "pipeline”: ["tagger", "parser", “ner”]

import spacy 3
nlp = spacy.load("en core web 1lg")

tokens = nlp(“My input text”) Text —> >tokenizer>—> tagger> parser> ner > > —> Doc

https://spacy.io/usage/ B
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Symbolic NLP: Sentence Parsing & Logical Form

(2) Who, did John, seem | ¢; [ e; to love ¢;]

Formal languages & linguistic theory (Chomsky, 1955-2000)

(0.0)
e Generative grammar (human language faculty) © ¢ ~—
e Compositionality of representations NIP""’ C?Ni“’"’ Parse tree (Correa, 1988)
e Acceptability of a sentence (binary) Who, COMP S®V
I | ™~
did NP@2 INFL' @V
| N
John, INFL VP®@Y
|
Who did John seem to love? Vi @

v ge
Bag of Words (BOW): L~
* [john, seem, love] seem - NP®) COMP! @)

| ™~
e COMP S@Y

IJIP}INFL’ D
»... the notion of the “probability of a sentence” is an entirely |
useless one, under any known interpretation of this term.« e INFL VPO
to \lﬂ ©.1)
Chomsky on the probability of a sentence (Quine’s empirical 1IN
assumptions, N. Chomsky, Synthese, Vol. 19, 1968) ‘|, NT“")
love e,
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Language models

Probabilistic view of language given a sample (corpus)
e Probability or a word or a sentence in a corpus
e Words: single (Zipf law), co-occurrence (Fitch)

e Language models: N-Grams and HMMs

e Given a word history, predict the next word
Statistical grammars (discrete vocabularies)
Markov assumption for word sequences
Metrics of a LM on a corpus: Entropy, perplexity
Probabilistic model estimation

Baker, Jelinek, 1974, 1976, 1980, 1992
Automatic speech recognition (ASR/STT)
Machine translation (MT)

e HMMs are symbolic ML models

Prediction and Entropy of Printed English

Entropy of English (Shannon, 1951)

Entropy of English (WSJ)

By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

Corpus: History book
Character language model: 26 characters
Character entropy: 2.3 bits/character

Character perplexity: 4.9 ( = 2%7)

Corpus: 40M words (test set 1.5M words) §
Word language model: 20K words
Entropy (3-gram): 6.8 bits/word
Perplexity (3-gram): 109
(Jurafsky and Martin, 2009)

Claude E. Shannon
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Neural language models

Bengio et al., 2003, A Neural Probabilistic Language Model, JMLR.

Multi-layer perceptron with one hidden layer, softmax output, residual connections
* N-gram model (N = 3) that jointly computes dense word embeddings i-th output = P(w, = i| context)
* No recurrence or attention mechanism. Train on Brown corpus, AP News.

softmax

[ X [ XX D)

1. associate with each word in the vocabulary a distributed word feature vector (a real-

. \
valued vector in Rm) s most| computation here \

2. express the joint probability function of word sequences in terms of the feature vectors
of these words in the sequence, and

\

1

tanh !

. .. !

1

3. learn simultaneously the word feature vectors and the parameters of that probability
Sfunction.

Neural network language model architectures: MLP, RNN, LSTM
Recurrence allows (in theory) to capture full sequence context B o S o
Mikolov (2010), Zaremba (2017) and Merity (2018) across words

across words

index for w,_, 11 index for w,_» index for w,_;

Newer models: Attention and transformers, since 2015 ("Muppet" models)
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Neural language models: Recurrence vs. Attention

Output
Mikolov et al., 2010 Vaswani et al., 2017 Probabilties
e Simple RNN LM e Encoder-Decoder Multi-Head Attention
e Architecture: d-model, N, h, ... :
Zaremba, 2017; Merity, 2018 e Max input length
e RNN/LSTMLM e Parameters: 213 million (large model)
e Training cost: 2.3 x 10'° FLOPS poeed 1t
Bahdanau et al., 2015 e Training on eight V100: 3.5 days T Scaled Dot-Product ﬂ&h
° Source X1—T, targ y1—M Add & Norm Attention
e RNN states h1-T . ) i o R Mul-Head : : :
e Context vector C e Task: SMT EN-DE, EN-FR . — P
e Data: 4.5M / 36M sentence pairs Forward 77 Nx
e \ocabulary: 37K / 32K tokens . —— AITE Nom
~>{_Add & Norm ] Maskod
Multi-Head Multi-Head
Attention Attention
L L
] J —
Positional o) Positional
Encoding ¢ Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.
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Attention and transformers: BERT and GPT

Parameters Layers dmodel

. 117M 12 768
BERT: Devlin et al., 2018 ﬁp Mask L Masi LM \ 345M o4 1004
e Encoder of Transformer = = GPT-2(2019) 760 36 1280
) 1542M 48 1600
e Universal encoder ol
e Masked LM; Next sentence AR Table 2. Architecture hyperparameters for the 4 model sizes.
e Pre-train; Fine-tune [efe]. [allmll=]- Tt | Task
Prediction | Classifier
e BERT-large: 340M parameters N
Masked Sentence A Masked Sentence B T
*
K Unlabeled Sentence A and B Pair / Layer Norm
Pre-training (“><_
GPT - GPT-3: Radford, 2018 - 2020 /@ /@ @“” \ Foed Eorward
Start/End Span
e Decoder of Transformer 12x ¥ GPT (2018)
Task: Predict next word —
N yer Norm
e Language prompt Pl BERT 3
e Zero-shot, Few-shot training ()&l (o] Eem]E]- . szM' B
aske u
e GPT-2 large: 1.5B parameters Sel Atention
e GPT-3: 175B parameters L
Question P Paragraph
\K& Question Answer Pair / Text & Position Embed

Fine-Tuning
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Attention and transformers: GPT-3

Quantity welght in Model Name Mparams  Mlayers dmodel  Theads  @head
Dataset (tokens)  training mix GPT-3 Small 125M 12 768 12 64
Common Crawl (filtered) 410 billion 60% GPT-3 Medium 350M 24 1024 16 64
WebText2 19 billion 22% GPT-3 Large 760M 24 153 16 9%
Books1 12 billion % GPT-3 XL 1.3B 24 2048 24 128
Wikinedia 3 billion 3% GPT-3 6.7B 6.7B 32 4096 32 128
P GPT-3 13B 13.0B 40 5140 40 128

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128

10
Zero-shot One-shot Few-shot
1010 i v /'77777 — T
s 175B Params
Natural Language S e

» A9 60 Prompt
1] 10
o o \
= 2 50
S @
k<] 8 £ .
© 10 @ S
N g z
= .

10 8

< 13B Params
6
10
,,,,,,,, L =2.57- C—0A048
P 1.3B Params
15 - - 10
10° 10" 107 10° 10° 10"

Compute (PetaFLOP/s-days) Number of Examples in Context (K)
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Size of neural language models: From ELMo to GPT-3

GPT-3 Model size
e 175B parameters, 1 TB memory
e Enough to store training data (300B tokens)
e Enough to store Wikipedia 300 times over

Compute 3.3 X 10% FLOPS
e Training time on one Tesla V100: 355 years
e Cost: $4.5 to $10M USD to train

Are the model sizes justified?
e Yes, by GPT performance charts
e But, size can be reduced to 0.1% to 3% of parameters
(alternate models; model distillation)
e Schick and Schutze, 2020; Adhikari et al., 2020

Data modeling and governance
e conflate knowledge of language, world knowledge
and data facts into a “black box” representation
e provenance, consistency, completeness, bias, priority

Better-than-GPT3 performance with 0.1% the number of parameters
- PET: 223 Million parameters, 74.0 average SuperGLUE score.
- GPT3: 175 Billion parameters, 71.8 average SuperGLUE score.

2018 (left) through 2019 (right) 2020 onwards 175B

Ly,
G,

source: stateof.ai Language models: Welcome to the Billion Parameter club
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Neuro-Symbolic Systems

e Architecture and data
e data representation (words, categories, relations, productions/rules, time, facts)
e distributed continuous vector representations
e trainable neural-like substrates for all components (learning)
e modular architecture, inductive biases: perception, memory, cognitive faculties, levels of representation, interfaces
e (Extended/continuous) physical symbol systems, Newell and Simon, 1976, 10th ACM Turing Award

e Probabilistic logic and databases (PDBs). Graph Networks. Neural Graph Networks. Compositionality.
e Anima Anandkumar, 2020, How to Create Generalizable Al, ACM TechTalks 08/11/2020.
e Guy van den Broeck, 2019, [JCAI Computers and Thought award.
e Peter Battaglia et al., 2018, Relational inductive biases, deep learning, and graph networks.

e Data modeling, data governance and model risk management
e |tis desirable for AI/ML/NLP models to separate (i) knowledge of language, (ii) world/data knowledge and (iii) data
facts (language specification, data schema, data elements)
e e.g., SQL BNF/semantics specification vs. data schemal/architecture vs. data elements vs. data queries
e Model risk: Interpretability and explainability are business requirements, especially in evolving regulated industries

FLORIDA ATLANTIC UNIVERSITY

DATA SCIENCE, ANALYTICS AND Al CONFERENCE Q\D?—))




Neuro-Symbolic Architecture

Hybrid Al systems
e |IBM Watson Debater, 2020
e |IBM Watson Jeopardy, 2011, was
symbolic/statistical
e Defined system interface levels

Watson uses advanced natural language processing to create a summary of the most significant
key points and generate a coherent narrative

Classify arguments Identify key points Match arguments to key points Generate narrative

Neuro-symbolic hybrid systems
e less training data
e track inference steps to draw
conclusions
e interpretability, explainability

e MIT IBM Watson Lab

bl = g9 &

Determine polarity Key point identification Key point matching Narrative summarization

Deep neural network removes Selects short, high-quality Grades and ranks the Selects the most prevalent key

irrelevant input texts and sentences as potential key prevalence of each key point points and corresponding high-

classifies arguments by points based on the sentences’ by identifying how many quality arguments to formulate

stance toward the topic quality assessment sentences articulate the gist
of the key point

a fluent and coherent narrative
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Conclusion

e Neural and symbolic approaches to Al and NLP
e complementary strengths/weaknesses
e hybrid models to refine the notion of a symbol system

e Model risk
e From data: Incomplete data, inconsistent data, irrelevant data; bias, malicious data, etc.
e From model: Interpretability/Explainability involve model and data.

e Societal implications: Future of work, model misuse, safety, ethics

e Ethics of Al: Stanford University HAI, MIT, IBM Al, Google Al Ethics as a Service, ...
e e.g., discussions at Standord HAI by O. Etzioni, 08/2020; C. Potts, 10/2020

e Opportunity: Model understanding, distillation, performance, accuracy, modularity
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Thank you

Nelson Correa, Ph.D.
@nelscorrea

Slides:
» https://nelscorrea.github.io
» https://nelscorrea.qgithub.io/fau2020/neurosymbolic

For useful discussions, thanks to:
* A. Correa, K.P. Unnikrishnan, R. Wesslen, W. Zadrozny
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