## Enterprise Semantic Search with Python Large Language Models PyData Miami 2022

**September 22, 2022** 



Nelson Correa, Andinum, Inc







### Who we are

- Document Understanding
- Digital Transformation
- Compliance

#### Nelson Correa, Ph.D.

- Developer and R&D in AI/ML/NLP
- ex-IBM, ex-Academic, Entrepreneur

#### **Enabling Digital Transformation**

#### Artificial Intelligence, Natural Language Processing, and Machine Learning

OUR SERVICES



### **Enterprise Semantic Search**

• Enterprise Search Semantic Search



#### **Enterprise and Semantic Search**

#### **Exploring term and dense vector indexing**

#### Enterprise Search

- Multiple enterprise data sources
- Data, media and documents
- Technology: Relational, no-SQL, Other
- Structured and unstructured (text & media)

#### Semantic Search

- Data semantics: tokens vs. "token meanings"
- Similarity: discrete symbols vs. dense vectors
- Semantic Web: URIs, Relations, Schemas

Fig. 1. Vector representation of document space.

 $D_3 = (T_1, T_2, T_3)$  $D_1 = (T_1, T_2, T_3)$ 🗕 T2  $D_2 = (T_1', T_2', T_3')$ 

Document vector space model Each term is a dimension of the space. Salton, 1975



Neural document embeddings arbitrary ML-learned dimensions

```
<div vocab="https://schema.org/" typeof="Person">
 <span property="name">Paul Schuster</span> was born in
 <span property="birthPlace" typeof="Place"
href="https://www.wikidata.org/entity/Q1731">
    <span property="name">Dresden</span>.
 </span>
</div>
```

Semantic web RDFa and RDF Graph Wikipedia



Graph resulting from the RDFa example



### **Agenda** Information retrieval, NLP, deep learning and AI models

- 1. Introduction: Enterprise search and Semantic search
- 2. Information Retrieval: Traditional and neural
- 3. NLP and Large Language Models
- 4. Financial semantic search for CFPB consumer complaints
- 5. Data visualization in dense vector spaces: UMAP
- 6. Evaluation, metrics, model risk and ethics

### Questions

# Modern Information Retrieval (IR) Search in large document collections



### **Information Retrieval** Traditional vector space model

- Documents, queries, tokens, document collections
- Vocabulary (V): set of tokens in a document collection (|V| range  $10^4$  to  $>10^6$ )
- Indexing:
  - SMART vector space model (VSM)
  - Each *Document* and *Query* are |V|-dim vectors
  - Binary (one-hot), Count, Weighted (e.g., TF-IDF)
- Search: Similarity (*dot-product* or *cosine*) of *Query* and *Document Collection*
- Each token is unrelated to every other one; lexical gap
- Indexing improvements: Stop words, stemming, lemmatizing, query expansion

```
# Sklearn TfidfVectorizer
# Document collection
dc = {
    "dl":"Simple is better than complex.",
    "d2":"Complex is better than complicated.",
    "d3":"Flat is better than nested.",
    "d4":"Sparse is better than dense."
}
from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = sk.feature_extraction.text.TfidfVectorizer()
vectorizer.fit(dc.values())
vec_features = vectorizer.get_feature_names()
print(f"Vectorizer features: {len(vec_features)} tokens\n{', '.join(vec_features)}")
Vectorizer features: 10 tokens
better, complex, complicated, dense, flat, is, nested, simple, sparse, than
```

#### *# Vectorize documents*

```
DC = vectorizer.transform(dc.values()) # Sparse matrix
pd.DataFrame(DC.toarray(), columns=vec_features)
```

|   | better   | complex  | complicated | dense    | flat     | is       | nested   | simple   | sparse   | than     |
|---|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0.334174 | 0.504879 | 0.000000    | 0.000000 | 0.000000 | 0.334174 | 0.000000 | 0.640375 | 0.000000 | 0.334174 |
| 1 | 0.334174 | 0.504879 | 0.640375    | 0.000000 | 0.000000 | 0.334174 | 0.000000 | 0.000000 | 0.000000 | 0.334174 |
| 2 | 0.310920 | 0.000000 | 0.000000    | 0.000000 | 0.595813 | 0.310920 | 0.595813 | 0.000000 | 0.000000 | 0.310920 |
| 3 | 0.310920 | 0.000000 | 0.000000    | 0.595813 | 0.000000 | 0.310920 | 0.000000 | 0.000000 | 0.595813 | 0.310920 |

Vocabulary size = 10

Four documents d1, ..., d4 indexed as 10-dimensional vectors



### **Information Retrieval** Dense vector encoder (BERT)

- Traditional VSM is *high-dimensional* (|V|) and *sparse*, and tokens are *discrete* (symbolic).
- Dense vector space representations (50 to +1000-dim)
  - LSA (SVD), LDA dimension reduction
  - word2vec, doc2vec, FastText, neural methods
  - Transformer models (BERT, dim = 768)
- Methods: self-supervised ML
  - corpus-based statistics and tasks (e.g., MLM), non-contextual/contextual word representations
  - Bi-directional or auto-regressive models
- ADVANTAGE: *Word*, *sentence* and *document* similarity, via vector similarity (cosine or dot-product)

```
# from transformers import AutoTokenizer, TFAutoModel
model ckpt = "ProsusAI/finbert"
tokenizer = hf.AutoTokenizer.from pretrained(model ckpt)
model = hf.TFAutoModel.from_pretrained(model_ckpt, from_pt=True)
def cls pooling(model output):
   return model_output.last_hidden_state[:, 0]
def get embeddings(text list):
   encoded input = tokenizer(text list, padding=True,
                          truncation=True, return tensors="tf")
   encoded input = {k: v for k, v in encoded input.items()}
   model output = model(**encoded input)
   return cls pooling(model output)
model.summary()
Model: "tf bert model 1"
                         Output Shape
 Layer (type)
                                               Param
bert (TFBertMainLayer)
                         multiple
                                               109482240
Total params: 109,482,240
Trainable params: 109,482,240
Non-trainable params: 0
```

```
# FinBERT: Vectorize documents
embeds_text = list(dc.values())
embedding = get_embeddings(embeds_text)
pd.DataFrame(embedding, columns=None)
```

|   | 0        | 1        | 2         | 3         | 4         | 5         | 6         | 7        | 8        | 9         |           |
|---|----------|----------|-----------|-----------|-----------|-----------|-----------|----------|----------|-----------|-----------|
| 0 | 0.190899 | 0.874197 | -1.032465 | -0.137693 | -0.306911 | -0.725966 | 0.436320  | 0.340217 | 1.060956 | -1.084645 | <br>0.058 |
| 1 | 0.107703 | 0.896653 | -1.145805 | -0.081705 | -0.417182 | -0.801632 | 0.639703  | 0.530051 | 1.056912 | -0.929148 | <br>0.237 |
| 2 | 0.271673 | 0.214038 | -0.597655 | -0.412695 | -0.234643 | -0.437923 | -0.073856 | 0.258040 | 0.904815 | -0.660722 | <br>0.194 |
| 3 | 0.025600 | 0.475642 | -0.886289 | -0.326687 | -0.135318 | -1.126632 | 0.167423  | 0.529638 | 0.543420 | -0.991395 | <br>0.336 |

#### 4 rows × 768 columns

BERT output embedding dimension = 768 Four documents d1, ..., d4 indexed as 768-dimensional vectors



## Financial semantic search of **CFPB** consumer complaints

### **Financial semantic search Consumer financial complaints**

- FinTEC and FinNLP
  - Financial data and document analysis; structured and unstructured data
  - Extraction, classification, search, prediction, ...
- Consumer Financial Protection Bureau (CFPB), 2010
- CFPB consumer complaints database (CCD)
  - Collected since 2011, over 2,600,000 complaints (994,000 in 2021)
  - "complaint\_what\_happend" (narrative text)
  - Label fields: Company, Product, Issue
  - Other fields: Date, State, ZIP code

|        | date_received | product        | sub_product                       | issue                                                | sub_issue                                            | consumer_complaint_narrative                      | company_public_respon                             |
|--------|---------------|----------------|-----------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 553086 | 02/11/2016    | Payday<br>Ioan | Payday loan                       | Charged<br>fees or<br>interest I<br>didn't<br>expect | Charged<br>fees or<br>interest I<br>didn't<br>expect | I have been paying {\$180.00} a month through d   | Na                                                |
| 553090 | 03/30/2016    | Mortgage       | Conventional<br>fixed<br>mortgage | Application,<br>originator,<br>mortgage<br>broker    | NaN                                                  | I recently became aware that<br>Amerisave Mortgag | Company believes it actor<br>appropriately as aut |
| 553096 | 02/12/2016    | Mortgage       | Conventional<br>fixed<br>mortgage | Application,<br>originator,<br>mortgage<br>broker    | NaN                                                  | Bank of America has<br>demonstrated an on-going I | Company has responded<br>the consumer and the     |







|   | _ |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
| ) |   |
|   |   |

### **CFPB Semantic search** FinBERT and FAISS

- Document embeddings: FinBERT (FIN custom BERT)
  - <u>https://arxiv.org/abs/1908.10063</u>
- ANN: FAISS indexing and search (Meta)
  - Billion-scale data sets (k-NN graph)
  - Original use case: Image search
  - Input: object dense embedding (image, text, ...)
  - <u>https://arxiv.org/abs/1702.08734</u> (FAISS)
- Available in <u>HuggingFace transformers library</u> and several db engines (Elasticsearch, PostgreSQL)
- CFPB Semantic search application (<u>notebook</u>): FinBERT, FAISS, Elastic/Postgres, Flask/Node



# Add FAISS embeddings
embeddings\_dataset.add\_faiss\_index(column="embeddings")
embeddings\_dataset

100%

49/49 [00:00<00:00, 139.38it/s]

```
# Sample query embedding
query = "there is incorrect information on my credit report"
query_embedding = get_embeddings([query]).numpy()
# Score and return top-k = 20
scores, samples = embeddings_dataset.get_nearest_examples(
    "embeddings", query embedding, k=20
```

| _ |    |               |                     |                                                   |              |                                                   |           |
|---|----|---------------|---------------------|---------------------------------------------------|--------------|---------------------------------------------------|-----------|
|   |    | date_received | product             | consumer_complaint_narrative                      | complaint_id | embeddings                                        | sco       |
|   | 19 | 06/01/2015    | Credit<br>reporting | Attached to this complaint are XXXX pages:1. S    | 1399498      | [0.10054400563240051,<br>-0.17099657654762268, -0 | 327.9290  |
|   | 18 | 08/13/2015    | Money<br>transfers  | I am filing this complaint regarding Pay<br>Pal   | 1518475      | [0.27614957094192505, 0.31134259700775146, -0     | 327.90496 |
|   | 17 | 09/03/2015    | Credit card         | i got the protection insurance on this<br>account | 1550194      | [-0.04275791347026825,<br>-0.1680782437324524, -0 | 327.89584 |



# **CFPB search examples**Sample queries & <u>Demo</u>

- Example queries (information needs)
  - Use cases (IR, QA ...); granularity query/document
  - Queries about product, issue, company, sentiment
  - Meta-queries (queries about the collection)
- Comparison to other models and approaches
  - Alternate transformer models: Multi-QA-MPNet; DistilBERT MS-MARCO
  - TfidfVectorizer/BM25: add\_faiss\_index vs. add\_elasticsearch\_index
- Speed (Intel i7-860 Processor; 66,000 records)
  - Query embedding: 150 ms
  - FAISS k-NN search: 20 ms

#### Query: there is incorrect information on my credit report

#### [ 1] - complaint\_id: 1636731, date: 11/03/2015, score: 20.44

I an writing in regards to my credit balance with XXXX XXXX XXXX. I currently have a maximum credit limit available to me of {\$800.00}, which I have owed over {\$790.00}. However, I have paid this credit card down to {\$280.00} and this amount has not been reported on my credit report. Therefore, my credit card utilization is incorrect and reflects inaccurate information ... which has reduced my credit score.

company: Equifax, product: Credit reporting, issue: Incorrect information on credit report

#### [2] - complaint\_id: 1548154, date: 09/02/2015, score: 20.40

This account was paid Contacted XXXX XXXX twice for payments arrangements they ignored my requests before it went to collections Contacted collection agency and informed them that I had contacted XXXX XXXX twice to set up payments and was ignored and I would be sending payments directly to XXXX XXXX I started making payments XX/XX/XXXX and paid off the account in XX/XX/XXXX I paid {\$50.00} monthly This account should have never been a collection/charge off I made a good faith offer to pay this bill prior to them charging it off I became unemployed but still tried to pay this bill when I fell behind in payments XXXX XXXX ignored my requests I wrote to them and was ignored

company: Equifax, product: Credit reporting, issue: Incorrect information on credit report

#### [ 3] - complaint\_id: 1538562, date: 08/26/2015, score: 20.38

I submitted a fax claiming that it was fraud and they never got back to me.

company: Equifax, product: Credit reporting, issue: Incorrect information on credit report



# Evaluation, visualization, risk

### Evaluation

### **Benchmarks, systems, metrics**

- Use dense embeddings with caution, per use case
- Evaluation benchmark
  - Document collection
  - Queries (information needs, use cases)
  - Document relevance judgements
- Systems: Models & FAISS vs. e.g., BM25 (Elasticsearch)
  - BM25 is a robust and competitive baseline
- Metrics: Precision, recall, F1, MAP, MRR, Recall at K
- Existing benchmarks:
  - REUTERS, NIST MUC, TREC, CLIR, LETOR Learning to Rank, MS-MARCO, MRPC
  - BEIR (UKP-TUDA): <u>https://github.com/UKPLab/beir</u>

| Model $(\rightarrow)$ | Lexical  | Sparse             |                    |              |                    | De           | nse                |        |
|-----------------------|----------|--------------------|--------------------|--------------|--------------------|--------------|--------------------|--------|
| Dataset (↓)           | BM25     | DeepCT             | SPARTA             | docT5query   | DPR                | ANCE         | TAS-B              | GenQ   |
| MS MARCO              | 0.228    | 0.296 <sup>‡</sup> | 0.351 <sup>‡</sup> | 0.338‡       | 0.177              | 0.388‡       | 0.408 <sup>‡</sup> | 0.408‡ |
| TREC-COVID            | 0.656    | 0.406              | 0.538              | 0.713        | 0.332              | 0.654        | 0.481              | 0.619  |
| BioASQ                | 0.465    | 0.407              | 0.351              | 0.431        | 0.127              | 0.306        | 0.383              | 0.398  |
| NFCorpus              | 0.325    | 0.283              | 0.301              | <u>0.328</u> | 0.189              | 0.237        | 0.319              | 0.319  |
| NQ                    | 0.329    | 0.188              | 0.398              | 0.399        | 0.474 <sup>‡</sup> | 0.446        | 0.463              | 0.358  |
| HotpotQA              | 0.603    | 0.503              | 0.492              | 0.580        | 0.391              | 0.456        | 0.584              | 0.534  |
| FiQA-2018             | 0.236    | 0.191              | 0.198              | 0.291        | 0.112              | 0.295        | 0.300              | 0.308  |
| Signal-1M (RT)        | 0.330    | 0.269              | 0.252              | 0.307        | 0.155              | 0.249        | 0.289              | 0.281  |
| TREC-NEWS             | 0.398    | 0.220              | 0.258              | 0.420        | 0.161              | 0.382        | 0.377              | 0.396  |
| Robust04              | 0.408    | 0.287              | 0.276              | 0.437        | 0.252              | 0.392        | 0.427              | 0.362  |
| ArguAna               | 0.315    | 0.309              | 0.279              | 0.349        | 0.175              | 0.415        | 0.429              | 0.493  |
| Touché-2020           | 0.367    | 0.156              | 0.175              | 0.347        | 0.131              | 0.240        | 0.162              | 0.182  |
| CQADupStack           | 0.299    | 0.268              | 0.257              | 0.325        | 0.153              | 0.296        | 0.314              | 0.347  |
| Quora                 | 0.789    | 0.691              | 0.630              | 0.802        | 0.248              | <u>0.852</u> | 0.835              | 0.830  |
| DBPedia               | 0.313    | 0.177              | 0.314              | 0.331        | 0.263              | 0.281        | 0.384              | 0.328  |
| SCIDOCS               | 0.158    | 0.124              | 0.126              | <u>0.162</u> | 0.077              | 0.122        | 0.149              | 0.143  |
| FEVER                 | 0.753    | 0.353              | 0.596              | 0.714        | 0.562              | 0.669        | 0.700              | 0.669  |
| Climate-FEVER         | 0.213    | 0.066              | 0.082              | 0.201        | 0.148              | 0.198        | 0.228              | 0.175  |
| SciFact               | 0.665    | 0.630              | 0.582              | <u>0.675</u> | 0.318              | 0.507        | 0.643              | 0.644  |
| Avg. Performance      | vs. BM25 | - 27.9%            | - 20.3%            | + 1.6%       | - 47.7%            | - 7.4%       | - 2.8%             | - 3.6% |

BEIR benchmark zero-shot system performance (https://arxiv.org/abs/2104.08663) Source: Ubiquitous Knowledge Processing Lab, Technische Universität Darmstadt





### **Data visualization** Understand your data clusters

- Space dimensions in ML-embeddings have no intrinsic meaning (unlike VSM)
- Dimensionality reduction maps dense high-dimensional spaces to 2D or 3D
- UMAP Uniform Manifold Approximation and Projection for dimension reduction (alternative to t-SNE)
  - <u>https://github.com/Imcinnes/umap</u>
- Apply to 768-dim encodings to reduce to 2D for visualization

```
from umap import UMAP
from sklearn.preprocessing import MinMaxScaler
X_normalized = sklearn.preprocessing.MinMaxScaler().fit_transform(X_viz)
umapper = UMAP(n_components=2, metric="cosine").fit(X_normalized)
X_viz_2d = pd.DataFrame(umapper.embedding_, columns=["X", "Y"])
X_viz_2d["Label"] = y_viz
```



### Model risk and ethics

#### Models, data, use cases, evaluation

- Model risk
  - Vector search rankings vs. symbolic search
  - Semantics of vector spaces (clusters and labels)
  - Data risk: representation and bias, in training and evaluation
  - Interpretability and explainability of machine learning models is critical
- Ethics for the use of AI/ML in "high-impact tasks in areas such as law enforcement, medicine, education, and employment."
- Model cards
  - Model details, Intended use, Factors, Metrics, Evaluation data, Training data, Analysis, Ethics, Caveats
  - <u>https://arxiv.org/abs/1810.03993</u> (Mitchell et al., 2019)
- AI/ML governance and regulation (cf. GDPR)





https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence

# Conclusion

### Conclusion

#### AI/ML enterprise semantic search

We presented enterprise semantic search on the CFPB consumer complaints database with recent results and PyData tools.

- Contrasted high-dimensional term-based indexing (traditional IR) to dense vector document representations for search. BM25 is a strong baseline.
- CFPB Semantic search with the HuggingFace transformers library
  - FinBERT & other transformer models (embedding)
  - FAISS fast indexing and search
- Model risk and ethics considerations, including use of model cards and AI/ML governance
- GitHub Jupiter notebook and slides <u>https://nelscorrea.github.io/PyData\_Miami\_2022</u>



Text Classification
Document Automation
Information Extraction
Regulatory compliance

Contact: <u>nelson@andinum.com</u> Twitter: @nelscorrea