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Abstract 

Attribute and unification grammar are syntax-directed grammatical formalisms that 
bear an important resemblance to each other and, especially in the case of unification 
grammar, enjoy certain currency as tools for linguistic description. A systematic study 
and comparison of the two formalisms, however, has not been reported to date. This 
paper reviews and compares the two formalisms, both from the point of view of their 
notations and expressive capabilities, and from that of their underlying algebraic semantics. 
The key to the semantic comparison is an algebraic formulation of the semantics of 
unification and the algebraic semantics of attribute grammar developed by Chirica and 
Martin [6]. The main result is that, from the point of view of their definitions and 
semantics, attribute grammar is more general than unifieatiun grammar, since it rests 
on a richer semantic algebra. This greater generality has important implications regarding 
the expressive power of the formalism and the possibility of efficient computational 
implementations for it. Also regarding their semantics, it is revealed that attribute 
grammar, unlike unification grammar, does not restrict attribute values to their basic 
term interpretation. This is a double-edged sword which, on the one hand, makes 
attribute grammar expressive and computationaUy efficient and, on the other, makes it 
computationally difficult to implement, because of the so-called "attribute evaluation 
problem". For unification grammar, the noted restriction on term interpretations is at 
the heart of the difficulties encountered in implementing such linguistically motivated 
extensions to the basic formalism as negation and disjunction. The conclusion of this 
study is that attribute grammar is a better suited and more highly developed grammatical 
formalism for the description of natural and artificial languages, due to its greater 
generality, expressive power and, also importantly, more efficient computational 
implementations. 

1. Introduction 

Attribute grammar [29] is an elegant formalization of the augmented context- 
free grammars found in most current natural language systems. It bears an important 
resemblance to the attribute-value of "complex-feature-based" approaches to language 
which rely on unification in their underlying interpretation [28, 33]. While in attribute 
grammar (AG) attribute values and conditions are defined declaratively by a set of 
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attribution rules and conditions associated with each production in the grammar, 
and attribute evaluation is heavily dependent on the modes of the attributes and the 
data dependencies introduced by the rules used to define their values, in unification- 
based formalisms (UG), unification of label-value structures serves the dual role of 
defining attribute values and conditions, and attribute evaluation amounts to the 
solution of a system of equations on the attribute-value structures, imposed by the 
particular derivation of the input string. Both formalisms (AG and UG), however, 
have in common that attribute values and conditions are defined in a syntax-directed 
manner, on a production-by-production basis. 

This paper reviews and compares attribute and unification grammar, taking 
as a point of departure a study of their underlying algebraic semantics, and then 
moving on to an analysis and comparison of their expressive capabilities, computational 
complexity, and implementability issues. This study is of interest since attribute 
grammar has been shown to be a viable formalism for the computational study of 
natural language [12,13] and, on the other hand, unification grammar is, with 
various extensions, the formalism underlying other current theories of language, 
including Lexical-Functional Grammar LFG [2], Generalized Phrase Structure 
Grammar GPSG [17], and Head-Driven Phrase Structure Grammar HPSG [32]. The 
key to the semantic comparison is the now standard algebraic approach to 
unification theory [34] and the formulation, within the framework of initial algebra 
semantics, of attribute grammar developed by Chirica and Martin [6]. The main 
result is that, from the point of view of their definitions and semantics, attribute 
grammar is more general than unification grammar since it rests on a richer semantic 
algebra. This greater generality has important implications regarding the expressive 
power of the formalism and the possibility of efficient computational implementations 
for it. 

From the point of view of their notations and expressive capabilities, we will 
see that attribute grammar, unlike unification grammar, does not restrict the 
interpretation of attribute values to their basic term interpretation. This is a double- 
edged sword which, on the one hand makes AG expressive and computationaUy 
efficient, and on the other makes it computationally difficult to implement, because 
of the so-called "attribute evaluation problem". For unification grammar, the basic 
term interpretation imposed on feature structures makes the formalism simple to 
implement, since it is a virtue of unification that it operates on partially instantiated 
structures, and hence the data dependencies imposed by rules on attribute values 
may be ignored. However, this simplicity of implementation cannot be maintained 
without incurring a high computational cost once we consider adding to the basic 
formalism such linguistically motivated extensions as negation and disjunction, or 
such important facilities in any computer language for the representation of knowledge 
and information as computable expressions. Thus, from a practical point of view 
we show that AG is more computationally efficient and expressive than UG, since 
it does not rely on unification as the sole operation for attribute evaluation. The key 
to this higher efficiency is the more "low-level" nature of AG, in which attribute 
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dependencies are observed and revealed explicitly in the grammar, and in which 
such dependencies are taken into account by the implementation for attribute evaluation. 

While we will not directly address it in this paper, we will look at the 
problem of attribute evaluation in attribute and unification grammar and show that 
the simplicity of unification approaches to the problem is not without a high cost. 
Attribute evaluation is one of the most difficult problems of AG. While the problem 
has been solved for certain subclasses of AG with syntactically unambiguous 
grammars [25], a general solution for ambiguous grammars (e.g. for natural languages) 
has only recently begun to be worked out. Current work by the author [14] and by 
Yellin [42] addresses the problem of ambiguous underlying syntax by an extension 
of Earley's algorithm or generalized attributed parsing. Tomita [39] also presents 
an efficient parsing algorithm for augmented context-free grammars, based on a 
generalization of LR parsing techniques. The extension of Correa [ 14] does on-line 
attribute evaluation, allows for ambiguous and even cyclic bases, and is sufficient 
for S- and L-attributed grammars. Yellin's [42] technique requires a cycle-free base 
and allows any (well-defined) attributions, but it handles the attribute evaluation 
off-line, in up to two phases after syntactic analysis. Tomita's [39] generalized LR 
parser also requires a cycle-free base and handles grammars with synthesized attributes 
only. In the algorithm proposed by Correa, unification could be used to generalize 
the algorithm beyond the class of L-attributed grammars and may play an important 
role in the late stages of attribute evaluation. 

In contrast, unification-based formalisms rely on unification as the sole operation 
for attribute evaluation, ignoring the question of data dependencies between attribute 
values. Their reliance on unification alone represents one of the major drawbacks 
of systems for UG, due to the high computational cost of unification and the 
difficulty of extending the basic framework, as noted before. Techniques already 
developed for efficient attribute evaluation in attribute grammars, such as an analysis 
of data dependencies and the use of pre-specified tree traversal or attribute evaluation 
methods, can be applied to the design and construction of more efficient and general 
UG systems. 

In addition to their formal properties, below, in sections 4 and 5, we will also 
look at the use of attribute and unification grammar as tools for linguistic description. 
We will see how the use of unification grammar in current unification-based theories 
of language shows a clear trend to reduce the role of syntax in language definitions, 
understood here as the role of phrase structure rules in the characterization of the 
language defined, and a serious redundancy between syntactic and semantic structure 
in the representations defined. The balance of this trend is unfortunate since, on the 
one hand, the first renders virtually useless the various techniques developed for the 
efficient syntactic analysis of context-free languages and, on the other, the second 
compounds the problem by making each step in an attributed derivation more 
computationally expensive, due to the increased size of the attributed representations 
involved. In contrast, attribute grammar definitions of language generally show a 
more balanced approach to the division between syntax and semantics and little 
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redundancy between them, thereby lending themselves to more modular and efficient 
computational implementations. 

The paper is organized as follows: Section 2 introduces the formalisms of 
attribute and unification grammar from the point of view of their notations and 
informal interpretations, as well as the method of initial algebra semantics. Then, 
in section 3, we develop a formal algebraic semantics for the two formalisms, based 
on the work of Pereira and Shieber [31] for unification grammar, and Chirica and 
Martin [6] for attribute grammar. Section 4 is devoted to an analysis of the expressive 
capabilities in the formalisms, including their term interpretations, partiality, and 
the limitations inherent to both formalisms as syntax-directed definitional tools. 
Section 5 considers questions of computational complexity and implementability of 
the formalisms. Finally, a conclusion is given regarding the superiority of attribute 
grammar for the statement of computationally oriented theories of language, but at 
the same time remarking on the need of new formalisms for principle-based description. 

2. Notations and preliminaries 

In this section, we introduce the basic ideas of attribute grammar, unification 
grammar, and the method of initial algebra semantics for programming languages. 
In what follows, a language is a set of strings over a finite set T of symbols and 
a grammar is a formal device for specifying which strings are in the set and for 
providing a denotation over a certain domain D of "semantic" objects for each 
string in the language. 

The two grammar formalisms we are concerned with are based on augmentations 
of context-free grammars. A context-free grammar is a quadruple (N, T, P, S), where 
N is a finite set of string categories; T a finite set of terminal symbols; P a finite 
set of rewriting rules or productions of the form X ---> ~, X ~ N, ~ ~ (N u T)*; and 
S a distinguished symbol of N. A binary relation =~ of derivation between strings 
over the vocabulary N u T of the grammar is defined such that o.X 13 =:~ aa[3 iff 
X ---> a is a production of P: now, =~* may be defined as the reflexive and transition 
closure of ~ .  The language generated by the grammar, noted L(G), is the set of 
strings o) ~ T*, such that S ~ *  (o. 

2.1. ATTRIBUTE GRAMMAR 

An attribute grammar is defined upon a context-free grammar G = (N, T, P, S) 
by associating with each symbol X E N u T a finite set A(X) of attributes, and a 
type or domain D,, for each attribute a thus defined [29]. Each attribute a of symbol 
X, noted X.a, takes values over its domain and represents a specific, possibly 
context-sensitive property of the symbol. For each derivation D according to the 
base grammar G, we define a corresponding attributed derivation D" by associating 
with each occurrence 11 of a symbol X ~ N u T in the derivation the attribute set 
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A(X) of X. Thus, the symbols of  interest in attributed derivations are attributed 
symbols of the form X[X.a~ . . . . .  X.a~], where X is the syntactic category of  the 
symbol and X.ai, for 0 < i < n, an attribute of  X. We use rl.a to denote the attribute 
occurrences associated with T1, for each attribute a ~ A(X). 

Attribute values in a given derivation are defined by attribution rules of the 
form Xi.a ~ f(Xj.b . . . . .  Xk.c), associated with each production p = X0 ~ X I . . .  Xn 
in the grammar, 0 < i,j ,k _< n, and applied at each step in the derivation where the 
production is used. Here, f is an applicative expression (function) whose value 
depends on the values of  attribute occurrences associated with symbols in the 
production. Each time p applies in the derivation, the attribution rule defines the 
value of  the attribute occurrence X.a as a function of  the occurrences Xj.b . . . . .  Xk.c, 
associated with other symbols in p. We let R(p) denote the packet of  attribution 
rules associated with p. The grammar may also define attribute conditions of the 
form b(Xi.a . . . . .  Xk.b), 0 < i, k < n, where b is a Boolean predicate on the values 
of  attribute occurrences of  symbols in p. This condition must be satisfied in any 
derivation requiring the application of  p, and thus contributes to the notion of 
grammaticality in the language generated by the grammar. We let B(p) denote the 
packet of  attribute conditions associated with p. 

The above remarks are summarized as follows: An attribute grammar is a 
four-tuple AG = (G, A, R, B), where 

(i) G = (N, T, P, S) is a context-free grammar; 

(ii) A = Ux~NurA(X) is a finite set of  attributes, with domains Da, for each 
a CA; 

(iii) R = up~pR(p) is a finite set of attribution rules, as above; and 

(iv) B = UpGpB(p) is a finite set of  attribution rules, as above. 

Usually in the attribute grammar literature, the process of  attribution and 
attribute evaluation in derivations according to AG is discussed in terms of  the 
derivation trees defined by the grammar. The base grammar G assigns a derivation 
tree x to each sentence in L(G). This tree is annotated at each node labelled X with 
the set A(X) of attributes associated with X; each attribute a ~ A(X) defines an 
attribute occurrence X.a at node X. If the grammar is well defined [29], it is possible 
to evaluate each attribute occurrence on the tree, and we say that x is correctly 
attributed iff all attribute conditions yield "true". The language generated by the 
attribute grammar L(AG) is now the subset of L(G) whose members have at least 
one correctly attributed tree. 

It is possible to classify the attributes in AG according to the manner in 
which their values are defined. Let AF(p) = {X.alX.a ~ f ( . . . )  ~R(p)} be the set 
of  defining attribute occurrences associated with symbols in a production p ~ P. We 
say an attribute X.a is synthesized if X.a ~ AF(p), for some production p = X ~ o ;  
i.e. if its value depends only on attributes of X or descendents of X. The attribute 
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is inherited if the production is of the form p = A ~ t~XB; i.e. if its value depends 
on attributes associated with X, its parent, or siblings. We say the grammar is S- 
attributed if it contains only synthesized attributes. A more general and practically 
important class of grammars is obtained if we allow attributes of both kinds, but 
such that each inherited attribute depends only on inherited attributes of the 
parent, or attributes of the sisters to its left; in this case, we say the grammar is L- 
attributed [3]. 

We are generally interested only in attribute grammars that are well defined 
in the sense that all attribute occurrences can always be evaluated, in any conceivable 
derivation tree. An attribute grammar is complete if for each attribute occurrence 
X.a in a tree at least one attribution rule is applicable to compute its value; the 
grammar is consistent if at most one such attribution rule is applicable. In AGs with 
both inherited and synthesized attributes, it is not always obvious when the semantic 
rules do not amount to a circular definition. An attribute grammar is said to be 
circular if  its attribute dependency graph, which records all the (data) dependency 
relations that arise from the attribution rules in the grammar, has a cycle, for some 
derivation tree) ) Now we are in a position to say an attribute grammar is well- 
defined if  it is complete, consistent, and its dependency graph is acyclic, for each 
derivation tree. 

One of the chief practical questions of attribute grammar concerns the manner 
in which attribute values are evaluated in a given derivation tree. We start with the 
assumption that the derivation tree x is available. This tree is decorated, so that each 
node 11 labelled by symbol X in the grammar is augmented with the attributes 
corresponding to it; if ai E A ( X ) ,  for 1 _< i < n, are the attributes of  X, we let 
Pos(rl) = [q.al . . . . .  q.an] be the attribute frame or positions associated with 1"1. We 
may think of each attribute occurrence "q.ai in the attribute frame as a variable of 
the required type, to be evaluated as indicated by the attribution statements. Now 
we let Pos('c) denote the collection of attribute positions in the whole tree. 

The derivation tree, together with the attribution statements in the grammar, 
determine a collection DT('r) of data dependency relations on the collection Pos('r) 
of attribute occurrences in the tree. We say an occurrence rl.a directly depends on 
another attribute occurrence ~.b, which we note ~.b < ~.a, if there is an attribution 
rule "X.a ~ f( . . . .  Y.b . . . .  )" that defines the value of rl.a in terms of the value of 
~i.b; the first occurrence cannot be evaluated unless the second has already been 
evaluated. The dependency relation DT(x) is now the transitive closure of "< ", and 
the attribute evaluation problem for attribute grammars can be formulated, rather 
abstractly, as the problem of finding a total order on Pos(x), such that for each 
position ~l.a ~ Pos(x), its value depends only on positions lower in the order [15]. 
Attribute evaluation methods may be formulated such that they proceed from the 
bottom of  the total order. We distinguish static attribute evaluators, which determine 

1)Circularity is a decidable property of attribute grammar, although the complexity of the test is 
exponential in grammar size [21]. 
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the evaluation order at construction time from the grammar, and independently of 
the individual trees, from dynamic attribute evaluators, which determine the evaluation 
order at runtime, depending on the particular attributed tree. Most practical attribute 
evaluators are static and may be generated only for certain subclasses of attribute 
grammar, such as S-attributed, L-attributed, and ordered [25]. 

Below is a simple attribute grammar which enforces subject-verb agreement 
and the subcategorization properties of verbs, adapted from [33]. The grammar uses 
two attributes, agr and subcat, where agr = <person,gender, number> is the agreement 
feature of nominal and verbal projections, and subcat the list-valued subcategorization 
feature of the verbal projection, including its external argument [41]. 

S ----> NP VP cond: 

NP --~ N attr : 

VP ---> V attr: 

VPo ---> VP1 XP, for 
attr : 

cond: 

NP.agr = VP.agr 
VP.subcat = [NP] 

NP.agr <--- N.agr 

VP.agr <--- V.agr 
VP.subcat <--- V.subcat 

XP = NP, PP, CP, etc. 
VPo.agr ~ VPl.agr 
VP0.subcat <--- rest(VP~.subcat) 
top(VPl.subcat) -- XP 

The attribution processes in this grammar are of a rather simple kind; namely, 
synthesis of the attributes agr and subcat by the nominal and verbal projections 
from the corresponding lexical heads. The two attribute conditions, in the first and 
fourth productions, refer to the values of these attributes and could easily be assimilated 
to synthesized attributes. See [14] for a typical Earley-style derivation according to 
this grammar. 

2.2. UNIFICATION GRAMMAR 

A unification grammar is similarly based on a context-free grammar 
G = (N, T, P, S). 2) It associates with each occurrence of a symbol X ~ N u T in a 
derivation a set of attributes or feature structure F(X) of label-value pairs, where 
the labels in the pairs are pairwise distinct and taken from a finite set L of labels, 
and the values are either primitive or complex. Primitive values are taken from a 

2)In what follows, we will only consider unification grammars with a context-free base and organize 
the definitions and discussion around that base. This allows us to reveal more succinctly the similarities 
and differences between attribute and unification grammar. See [33] for an extension to grammars 
with infinite non-terminal domains. 
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possibly infinite set C of  atomic values, while complex values are themselves 
feature structures of label -value  pairs. 3) Notice that the labels in a feature structure 
must  be distinct, but that the values associated with the labels may be equal, where 
equality may be understood in the sense of  type or token identity. In the case of  
token identity, we say that the values share structure. There is a natural interpretation 
of  feature structure descriptions as terms over a language with variables [35], as 
finite-state automata [24], or as rooted directed acyclic graphs, in which arcs are 
marked with labels and nodes correspond to values which are themselves directed 
acyclic graphs [33]. 

Given a feature structure F = { (ll ,  vx) . . . . .  ( l k ,  Vk) [ k > 0 and I i g: lj, if  i ~ j  } 
and a label l, we let (F, 1) denote the value v if (1, v ) ~ F ,  or empty (the empty 
feature structure) otherwise. Similarly, since values are themselves feature structures, 
if Ii . . . . .  In are n > 1 labels, we let (F, l x . . .  ln) denote the value ((F, Ix) . . . . .  ln). 
A string <~ = 1~ . . .  1 n of labels is also known as a path of length n. For completeness,  
if "e" is the empty path, we define (F, e ) =  F. 

The feature structure associated with a symbol in a derivation is defined 
incrementally, in a syntax-directed manner, by a set of  equations of  the form (i o )  -- V, 
associated with each production p = X0 ---> XI � 9  Xn in the gr.ammar, and applied 
at each step in the derivation where the production is used. Here, i is the index of  
symbol Xi in the production, 0 < i < n, <~ ~ L" a path, and V either a constant c E C 
or a pair (j o ' ) ,  0 < j  < n, <~' E L*. If V is the constant c and F(Xi) contains the path 
o, the meaning of  such an equation is that (F(X~), o)  = c. I f  F(X0 does not contain 
the path t~, it must  be added to it as required and then its value made equal to c. 
If  V = (j <~'), the meaning of the equation is that (F(Xi), o)  = (F(Xj), o ' ) ,  assuming 
the paths <~ and <~' belong to F(Xi )  and  F(Xj ) ,  respectively. If  either path is not in 
the corresponding feature structure, it must  be added to it and then the previous 
equation applied (of. [24]). A special case arises with equations of the form (i c )  = (i c ' ) ,  
where o '  is a subpath of  <~, or vice versa. In such cases, the resultant structure is 
cyclic and is excluded from the domain of proper feature structures. The equation 
(i o)  = V is said to be a partial descriptor of F(Xi) ,  since it constrains the feature 
structure's value on a certain path. Let E(p) be the set of  equations associated with 
production p in the g r a m m a r :  ) 

The above remarks about (context-free based) unification grammar  are 
summarized as follows: A unification grammar is a four-tuple UG = (G, L, C, E), 
where 

3)Shieber [33, p. 7] stipulates finite sets of both labels and atomic values; likewise, the automata 
theoretic domain of Kasper and Rounds [24] for feature structures requires finite sets. 

4)The usual characterization of unification grammar (e.g. [33]) assumes that the rewriting operation of 
the grammar is done over feature structures with an explicit attribute (label-value pair) marking the 
syntactic category of each structure. Our presentation, letting the rewriting be done on the CFG base 
alone and associating separately the feature structure of each symbol, differs formally but not in 
substance from this definition of UG. 
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(i) G = (N, T, P, S) is a context-free grammar;, 

(ii) L is a finite set of labels or attribute-names; 

(iii) C is an infinite set of constants, which correspond to basic feature structures; 
and 

(iv) E = up~pE(p) is a finite set of  equations in feature structures, as above. 

The solution to each equation associated with a production in the grammar 
corresponds to feature unification, an operation that, given two feature structures FI 
and F2, computes a feature structure F2 that contains the information in F~ and F2 
and denotes the intersection of  the denotations of  F~ and F2. Hence the motivation 
for calling the formalism "unification-based". 

An issue not captured in the previous definition of UG is the fact that each 
symbol in a grammatical rule has its own feature structure associated with it, and 
that the descriptors associated with the rule, in general, state equivalences between 
values in these different feature structures. Hence, the entire grammatical rule is 
sometimes understood as having associated with it a feature structure embedding 
those of all the symbols in the rule, such that unification is always carried on 
different paths of  a single structure [33]. 

To illustrate UG definitions, the previous grammar for subject-verb agreement 
and complex subcategorization is now: 

S ~ NP VP <1 agr> = <2 agr> 
<2 subcat top> = "NP" 

NP ~ N <0 agr> = < 1 agr> 

VP ~ V <0 agr> = <1 agr> 
<0 subcat> -- < 1 subcat> 

VPo ~ VP1 XP, for XP = NP, PP, CP, etc. 
<0 arg> = < 1 agr> 
<0 subcat> = < 1 subcat rest> 
< 1 subcat top> = "XP" 

We should note that, unlike attribute grammar, where the set A(X) of attributes 
associated with a symbol X is fixed and defined in advance by the grammar, the 
top-level labels of  the feature structure F(X) associated with each occurrence of  X 
in a derivation are defined dynamically by the derivation, and may in fact turn out 
to be different for each occurrence of  X in it. 5) In this regard, see section 4.2. 

The next two sections, 2.3 and 2.4, present the basic definitions and results 
of  the method of initial algebra semantics for context-free languages that will be 

2) Formally, the feature structure associated with a symbol is either an atomic value or a partial function 
f : L - - ~  F from labels into feature structures [31]. 
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used to provide a semantics for attribute and unification grammar. The material is 
rather technical and may be skipped in a first reading by those readers not interested 
in the technical details of our presentation. 

2.3. INITIAL ALGEBRA SEMANTICS 

In this section, we review the necessary notations and results of the initial 
algebra approach to semantics of Goguen et al. [18]. Initial algebra has been used 
in the study of programming language semantics and in algebraic specification of 
abstract data types [19]. 

Let S be a set of type symbols or sorts and A --- {As}s~s an S-indexed family 
of sets. Then S* is the set of all strings of type symbols and for each w ~ S*, we 
let A w = A s t x A s 2 x . . . x A s n  i f w = s l s 2 . . . s n ,  and A w={ } if w is the empty 
string. A function f : A w ~ As is said to be of arity I wl, target type s, and type 
(w, s). If I w l = 0, then f : ~ As is regarded as a constant  of type s. 

A signature or S-sorted operator domain r~ is a family E = {r.w,s}wES, ' sEs of  
sets of symbols, where each element f ~ Ew,s is an operator of type (w, s}. An S- 
indexed set of variables is a family V = {Vs}sGs of countable sets of variables, 
where Vs is the set of variables of type s. 

DEFINITION 

Let E be an S-sorted signature. A many-sorted (or S-sorted) Z-algebra consists 
of  an S-indexed family of sets A = {As}sGs and a function fh :A  w ~ As for each 
operator symbol f E Ew,s, w E S*, and s E S. The set A = UsEsA s is called the carrier 
of the algebra. 

Many-sorted algebra is also known as heterogeneous algebra and is a 
generalization of one-sorted algebra, in which there is only one sort symbol. It 
admits a further generalization to order-sorted algebra [19], in which there is a 
provision for hierarchically defining subsorts of sorts. In the following, we use A 
ambiguously to refer to the algebra and its carrier. 

Given an S-sorted signature E and S-indexed set V of variables, we let T~ 
denote the term algebra over the symbols in E (Herbrand universe of  terms), and 
Tztv) the algebra of terms with variables in V. These algebras are of special interest, 
as we shall see below. 

Given a E-algebra A and S-indexed set V of variables, an assignment of 
values in A to variables in V is a family of functions 0 = {0s: Vs ~ As}s~s. 

DEFINITION 

Let A and B be S-sorted E-algebras. A 7-,-homomorphism h: A---) B is a 
family of functions hs: As ~ Bs that preserves the operations of the algebras. That 
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is, for all f ~ Zw, s, (w, s) E S* x S and a e A w, h,(fA(a)) = fB(hW(a)), where hW: A w ~ A w 
is the function that maps the i-th component of its argument a e A w according to 
hi, 0 < i < l w l .  

PROPOSITION 

Given a E-algebra A, set V of variables, and assignment 0 : V ~ A, there is 
a unique homomorphism O : Tr4v) -'-) A that extends 0, in the sense that | = 0(x), 
for all x ~ V. 

Given a signature E, a collection C of E-algebras together with all Y_,- 
homomorphisms between the algebras is a category of E-algebras. Within this 
category, certain algebras are special in that they represent the category. The following 
is the key definition of many-sorted algebra. 

DEFINITION 

A E-algebra A is initial in a category C of E-algebras and Z-homomorphisms 
if and only if there exists a unique E-homomorphism from A to any other E-algebra 
B inC .  

The following proposition reveals the importance of the initial algebra concept. 

PROPOSITION 

If A and B are initial E-algebras in a category C of E-algebras, then they are 
isomorphic. Furthermore, for each signature Z, the term T~: is initial in the category 
of all E-algebras and E-homomorphisms. 

The category As of all E-algebras is sometimes called the anarchic category 
since it has no laws. In general, we are interested in categories that satisfy certain 
laws on their operations, expressed by means of equations. A T-equation is an 
expression of the form s = t, where s and t are terms with variables in Tr.(v), for 
some set V of variables. 

In order to apply the initial algebra approach to the semantics of context-free 
languages, we define a class of many-sorted algebras Tc associated with each 
context-free grammar G. The operator domain of the algebra is sorted by the vocabulary 
symbols of the grammar and is denoted also by G. This algebra is initial in the 
category of all G-algebras, and its elements represent the derivation trees according 
to G. For simplicity, we will rely on our intuitive notion of "derivation tree" and 
refer the interested reader to [6] for a precise account. 
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2A. PARTIALLY ORDERED SETS AND DENOTATIONAL SEMANTICS 

The following definitions about complete partially ordered sets (CPOs) and 
elements of Scott's denotational approach to semantics [38] will be necessary in the 
next section to give a semantics to attribute and unification grammars. 

A partially ordered set (or poset) is a pair (P, <_.), where P is a non-empty set 
and "-<" a reflexive, antisymetric, and transitive relation on P. Often, we use P to 
denote both the set and the poset. A chain of a poset P is a subset X of P totally 
ordered by "<";  we let lube(X) be the least upper bound of X in P, if it exists. If 
0 denotes the empty chain, we let lubp(0) = _l_p denote the least element of P, if it 
exists. Where no confusion may result, we drop the subscript P from iubp and .l.p. 
The poset P is a complete partially ordered set (CPO) if every chain X of it, 
including the empty chain, has a least upper bound. Notice that any set S may be 
made into a flat CPO S• = S u {_!.} by defining the order to be a < b, if a = .I. or 
a = b ,  for all a, b ~S. 

DEFINITION 

Let P and Q be CPOs. A function f : P ~ Q is said to be continuous if, for 
each non-empty chain X ~ P, lubQ(f(X)) exists and, furthermore, f(lubp(X)) 
= iUbQ(f(X)). The function is said to be strict if f ( ip)  = .I.Q. 

Given arbitrary sets A and B, a partial function f : A ---> B can be made into 
a strict continuous function f• : A• ---> B• (its natural extension) by letting, for each 
a ~ A ,  

(a) = I f(a) if f(a) is def'med, 
fi 

t .I. B if not, 

and 

f •177  = -LB. 

The set of all continuous functions f : P ---> Q can be made into a CPO, noted 
[P --> Q]. Also, for each CPO P, there exists a continuous function Fix],: [P ---> P] ~ P, 
defined by 

Fixp(f) = lubi>o(fi(• 

Fixv is called the least fixpoint operator of P. 

3. Algebraic semantics of attribute and unification grammar 

In this section, we turn to the question of providing a semantics or denotation 
for a given attribute grammar or unification grammar. Our approach is motivated 
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by the initial algebra approach of [6] for attribute grammars, in which the denotation 
of  an attribute grammar is a set of  pairings between derivation trees and a certain 
collection of  functions between the inherited and synthesized attributes at the root 
of  a tree. The approach is within the framework of many-sorted algebra of the last 
section, and could benefit from recasting in order-sorted algebras [36]. 

The semantics is given in terms of  derivation trees rather than input strings 
directly since, in general, context-free grammar, the formalism on which both formalisms 
are based, does not provide a unique mapping from each input string into derivation 
trees, as fig. 1 shows. Thus, in order to obtain the usual denotation of  a grammar, 

L(G) p ~ TG d ,,~. D 

Input strings Derivadon trees Semantic objects 

Fig. 1. 

as a mapping from input strings into their "meanings", we would  simply compose 
the mapping p from input strings to derivation trees with the map d from trees into 
their denotations. The first map is of course the parse relation between strings and 
trees determined by the context-free grammar, which we take for granted here. 

3.1. SEMANTICS OF ATI'RIBUTE GRAMMAR 

Our first concern is the manner in which the attribution rules in an attribute 
grammar are stated. In our informal presentation of attribute grammar in section 2.1, 
the attribution rules associated with a production p = Xo ~ X1 �9 �9 �9 X,~ in the base 
grammar are of the form Xi.a ~ f(Xj.b . . . . .  Xk.c), where the expression on the 
right represents a semantic function fp/~ : Db x . . .  x Dc---> Da, which defines the 
value of  the attribute a of the ith symbol Xi in p, in terms of  the values of  attributes 
of  other symbols in p. 

If we let S be a set of sort symbols denoting the domains D a of  the attributes, 
the language in which the semantic functions are expressed is an S-sorted language 
of terms with variables, constructed from an S-sorted set V of varible symbols and 
an S-sorted signature ~ of primitive function symbols (including constants). The 
variables are written as Xi.a, where X is a syntactic category, i an optional index 
to indicate the instance of the category in the production, and a ~ A(X) an attribute 
of  X. The primitive function symbols have types in S*x  S and are interpreted as 
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functions over the domains Da of the attributes. Using this language, each attribution 
rule is an equation of the form v = t, where v is a variable symbol and t a term. 
The domains Da of the attributes and the primitive function symbols in E define a 
Z-algebra. The semantic function, expressed by the term t, is therefore a derived 
operation of the (Z)-algebra. 6) The equation is well-typed if v and t are terms of the 
same sort s E S. 

According to the definitions of section 2.1, an attribute grammar is well 
defined if it allows us to evaluate all attribute occurrences in any conceivable 
derivation tree. The grammar is complete and consistent if and only if for each 
production p = Xo ---> XI .  �9 Xn it defines (i) all and only the inherited attributes of 
Xi, for 1 < i < n, and (ii) all and only the synthesized attributes of Xo. Thus, if we 
let X.ri and X.o denote, respectively, the vectors of inherited and synthesized 
attributes of X (in some fixed chosen order), the equations associated with the pth 
production may be written as: 

Xo.O = Gp(Xo.Ti, Xo.O, XI.I'I, XI .O  . . . . .  Xn.lq, Xn.O), 

Xi.l 1 = Fpi(Xo.'q, Xo.G, X1.11, X1.G . . . . .  Xn.l~, Xn.(3), 

for 1 __. i < n, 

where Gp is the vector of terms consisting of the semantic functions feo,,, for all 
(synthesized) attributes a ~ AS(Xo), in the order chosen in Xo.a; and Fpi is similarly 
the vector of terms consisting of the semantics functions fp~, for 1 < i _< n and all 
(inherited) attributes a ~ AI(Xi), in the order chosen in Xi.rl. 

One problem to deal with in connection with the use of terms to define the 
semantic functions is that the function defined may be partial or have different 
values, according to the interpretation given to it. This happens, for example, with 
the term "if p then x else y", with a conditional primitive operation. This expression 
might be evaluable when p is "true" even if y is "undefined" or depends circularly 
on the value of the expression. The interpretation of the terms thus bears on important 
issues of attribute grammar, such as the circularity problem, their classification, and 
the formulation of attribute evaluation methods. 

Taking Scott's denotational approach [38], the solution to this problem is to 
extend each attribute domain Da into a CPO, adding a new value "_!." to the domain, 
and to require all semantic functions fe;" to be continuous on the extended domain 
Da u {.1.}. The new value .1_ can now be used to formalize the idea of a variable 

6) Strictly speaking, a term in a language does not define a derived operation, since we do not know 
the intended domain of the definition. However, following standard mathematical practice, the type 
information is inferred on syntactic grounds, so that if t is the term, x I . . . . .  x. the variables in t in 
s o m e  fixed chosen order, and f its outermost operator symbol (in prefix notation), then the type of 
the derived operation is s 1 •  • s. --~ sf, where si is the type of xl and s/the target type of f. 
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over the domain being "undefined". The above primitive semantic function "~.pxy. if 
p then x else y "  can now be extended in various continuous ways, making it strict 
in some or all of its arguments. 

The above discussion regarding the algebraic definition of  attribute grammar  
is summarized in the following definition of  Knuthian semantic systems [6]: 

DEFINITION 

A Knuthian semantic system (K-system) is a quadruple K = (G, D, - ,  _,  F), 
where 

(i) G -- (N, T, P, S) is a context-free grammar; 

(ii) D is a Z-algebra, called the primitive semantic algebra, with a given set S of  
sorts and S-sorted operator domain Z. The carriers Ds, for s q S, are called 
the primitive semantic domains and the operations fn o f  D, for each primitive 
function symbol f ~ Zw,, for w ~ S*, and s E S, the primitive semantic functions; 

(iii) - : N u T ---> S* and _ : N u T ---> S* are two attribute type-assignment functions, 
which associate with each terminal and non-terminal symbol A the type strings 
A -  and A_ of  its inherited and synthesized attributes of  A, respectively. 

(iv) F = t..)pe p {Gp, Fpi I P = Xo ~ X I . . .  Xn, 1 < i --< n} is the set of  semantic functions 
associated with the productions in the grammar, given as terms with variables 
in the term algebra To. These functions must  be derived semantic operations 
o f  the algebra D and, if p = Xo ---> X1 �9 �9 Xn, of  the types 

Gp" Xo- Xo-  XI -  Xl . . . .  Xn'- X n - ~  Xo-  

Fpi: X o  Xo-  X z- X l . . . .  Xn- X,,_--'-> X i - ,  

for l _ < i < n .  

We say a K-system is continuous if  its underlying primitive algebra D is continuous. 
In this case, the semantic functions Gp and Fpi are continuous. 

Having obtained a precise algebraic definition of attribute grammar  (as a K- 
system), the question of  providing a denotation for it can be directly answered. 
Given a derivation tree % assume a fixed ordering no, nl . . . . .  nn . . . . .  nm of  its 
nodes,  n > 0 and m > n, such that no is the root and nl . . . . .  nn the immediate  
descendents of  no. Now, for 1 < i < m, let Ci be the category of  node n i and let rh 
and oi be distinct variable strings ranging over the domains Cci-  and D ci-  of 
inhertited and synthesized attributes of  Ci, respectively. We let wx be the vector of  
output  and internal positions of the tree, defined recursively as wx = ao, if  m = 0 
(i.e. 'c consists of  just  its root node), and wx = (Oo, rh . . . . .  tin, wx I . . . . .  Wxn) if the 
root is no and x~ . . . . .  Xn are the subtrees of  x with roots n~ . . . . .  no. 
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Since rio represents the input positions of the tree "c, the attribute evaluation 
problem now amounts to solving the recursively defined system of equations 
we = Hx(rio, wr given by 

O 0 = Gp(~O, O0, 111, 01 . . . . .  l~n, On), 

~i = Fpi(ri0, Go, 111, O1 . . . . .  ~n, On), fo r  1 <_ i < n, 

w~i = Hxi(Th, wxi), for I _< i _< n. 

The bottom of this recursion occurs when n = 0; i.e. when the tree is only the root 
node, in which case the system of equations reduces to Oo = Gp(~O, oo). The solutions 
to the system are the fixpoints of Hx on the second argument, of which we choose 
the least fixpoint, which always exists if the K-system is continuous. If AG is a 
continuous K-system, Co the category at the root of the tree x, and D ~ denotes the 
domain of the output and internal positions of the tree, the leastfixpoint semantics 
of x assigned by the K-system is the function S,: D e'~ D x, defined by 

Sx = ~, r/. Fixw(Hx(ri, wx)) 

from the input attributes of the tree (rio is the vector of inherited attributes at the 
root Co of x) into the vector of output and internal positions of x (wx ~ DX). If t has 
no inherited attributes at its root, the semantic function reduces to Sx = Fixx)~(Hx(wx)), 
which is the fixpoint attribute valuation at all positions w~ of the tree. If, as is 
usually the case, we are interested only in the synthesized attributes at the root of 
x, we may take the semantic function associated with x to be 1~ = H a o Sx, where 
rla is the projection function Via: D x ---) D c*--, which maps the output and internal 
positions w~ = (Oo, ril . . . . .  rin, w~t . . . . .  w~n) of x into the vector oo of synthesized 
attributes at the root Co of the tree. Chirica and Martin [6] show that the family 
h = {l~lx is a derivation tree in Ta} of functions is the unique homomorphism 
h : _T.r ~ [D c*-" ~ D co-] from the algebra TG of trees into the semantic algebra 
[D e-* ~ D c*-] of evaluation functions. 

The algebraic formulation of the attribute evaluation problem, which by itself 
is a rather complex process, frees it from the combinatorial aspects of attribute 
dependency graphs and from any recourse to tree traversal algorithms. The algebraic 
definition is also more general than the standard one, since by appropriate continuous 
extension of the primitive semantic functions it may handle even circular definitions. 
Lastly, the algebraic formulation suggests a method for converting an arbitrary 
continuous K-system, with inherited and synthesized attributes, into a purely synthesized 
one with the same base context-free grammar. For this, we eliminate all attributes 
of the converted system and associate instead a single synthesized attribute with 
each non-terminal symbol, over the domain [D c*- ~ D c*--] of evaluation functions 
in the original system. A more modest application of this technique results in the 
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"hoisting" transformation of  Waite and Goos [40], whereby an inherited attribute 
a of a symbol is eliminated, and all uses of the attribute in the grammar are replaced 
by functions from the domain of a into the domain of  the attribute being defined. 

3.2. SEMANTICS OF UNIFICATION GRAMMAR 

Our approach to the semantics of unification grammar is similar to that in the 
preceding section for attribute grammars; that is, it is based on the idea of  mapping 
each derivation tree into the vector of  feature structures associated with all nodes 
of  the tree. The semantics of  a unification grammar will then be a function from 
derivation trees into the function that maps each given (input) feature structure into 
a more specific instance of this structure. 

Our first concern must be the interpretation of  feature structure descriptions 
and of the descriptor equations used to define equivalence between them in a 
grammatical rule. We take a feature structure to be, as in section 2.2, either an 
atomic value c, taken from a possibly infinite set C of atomic values, or a collection 
F = {(1 i, v i )  } of label-value pairs, where the labels are taken from a finite set L of  
labels and are pairwise distinct, and the values are again feature structures, either 
atomic or themselves complex feature structures. We take the collection FS of all 
finite feature structures thus defined to be the domain of feature structures; it may 
be understood as the set of  finite trees with arcs labelled by elements of L and 
terminal nodes labelled by elements of C. 

As Pereira and Shieber [32] point out, it is important to distinguish features 
structures from the domain of  their descriptions. For the latter, we shall take the 
domain of  feature structures extended with variables over the domain of  descriptions. 
That is, feature structure description is either an atomic value c r C, a variable v 
taken from a countable collection V of variables, or a collection F = {(1 i, v i )  } of 
label-value pairs, where the labels 1 i E L are pairwise distinct and the values v~ are 
finite descriptions. We let FD denote the domain of feature structure descriptions. 
If d is a feature structure description, we let var(d) denote the set of  variables 
contained in d and say the feature description is ground if it contains no variables. 
Note that the set of  ground feature structure descriptions is exactly the domain F 
of  feature structures. 

An assignment of values in FD to variables in V is a function 0 : V ~ FD. 
Abusing terminology, we say the domain of the assignment is the set dom(O) = {v Iv ~ V 
and 0v g v}. We say the assignment is ground if it assigns to each variable in its 
domain a ground description. A substitution is an assignment t~ with a finite domain. 7) 
If d is a description and a a substitution, we let trd denote the description obtained 
by replacing each variable v in var(d) by its image o(v) under or, with the usual 

7) An assignment, and hence a substitution, may be extended in a unique manner into a homomorphism 
on the algebra of  feature descriptions, as we saw in section 2.3. However, for this extension to be 
meaningful, we must first reveal the algebraic structure of descriptions (el. [35]). 
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care about variable name clashing and renaming; if the substitution is ground, then 
there is no such problem about renaming. The denotation of a feature structure 
description d may now be defined as the set 

[d] = {(sdltsd is ground, for all substitutions (s} 

of all ground descriptions (i.e. feature structures) that result, under all substitutions 
o. There is a natural partial order called subsumption that results in feature structure 
descriptions, based on their denotation: Given descriptions dr and d2, we have 
dl <-- d2 (dr subsumes d2) if the denotation of dr contains the denotation of d2. The 
bottom of this partial order is _1., which denotes the variables, while the top elements 
(there is not a unique one) are in the domain of (ground) feature structures. The 
order may be made into a complete lattice by adding the description T to FD, which 
denotes the inconsistent feature structure description and has an empty denotation. 

Since a partial order is the basic concept underlying the formal framework 
of unification [34], the operation can be defined on the domain of feature structure 
descriptions. If dr and d~ are feature descriptions, their unification dl --d2 is the 
least upper bound of dr and d2; it corresponds to the descriptor that contains the 
information of both dr and d2 and denotes the intersection of the denotations of dr 
and d2. It can be shown that unification is continuous in the domain FD of feature 
descriptions. 

Now we consider the partial descriptor equations associated with the rules in 
the grammar. Following Pereira and Shieber [31], the descriptors associated with 
a production p = Xo---) XI . . .  Xn are expressions de k fiE(p), for 1 < k < IE(p)I, of 
one of the following two forms: 

( i o ) =  c, 0 < i < n ;  ts ~L*; and c ~ C ,  

( i ts)= (jts'), O_<i,j_<n and ts, o '~L* .  

Each descriptor expression is taken as the specification of an equation on the feature 
structure descriptions associated with the symbols in the production. If a = 11 . . . . .  lh, 
where 1 i EL,  and F(Xi) denotes the description of symbol X~, the first descriptor 
means the equation Epk 

F(Xi)-(11,(  . . . .  (lh, C ) . . . ) ,  

where the expression on the right-hand side is the feature structure description 
consisting only of the path o and the value "c" at the end. If ts = 11 . . . . .  lh and 
tS' = 1~ . . . . .  lm, the second descriptor means the equation Epk 

F(Xi)-(11,(  . . . .  (lh, v ) . . . )  & F(Xj) - ( l l ,  ( . . . .  ( l ~ , v ) . . . ) ,  

where the variable v does not occur in either description F(Xi) or F(Xj), and is 
"shared" by the descriptions F(Xi) and F(Xj), at the end of the corresponding paths. 
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We say a partial description is cyclic if it entails an equation of the form 
v -  d, where d is a feature structure description that contains the variable v. This 
formulation of cyclic descriptions allows us to see that their unification has the 
unification "occurs-check" problem. Notice that since our definition of feature 
structures allows only finite ones (i.e. those generated by application of the construction 
rules a finite number of times) cyclic descriptions are inconsistent and have an 
empty denotation. 

The equations Epk corresponding to the set of descriptors E(p) associated 
with production p in the grammar are obtained individually as above. Care must be 
taken, however, that the variable in each equation of a descriptor with two paths 
is unique, not occurring in any other equation or in any of the feature structure 
descriptions associated with symbols in the production. Now, if the dpk ~ E(p), for 
l < k < l E ( p ) l ,  are the descriptors of p and the Epk are the corresponding 
equations, the equation associated with the production p is the conjunction 
Ep = Epl &.  �9 �9 & Ep, lE(p)l of the equations determined by the descriptors in E(p). In 
general, notice that there may be some symbols in the production whose associated 
feature structure descriptions are not referred to in the equation of the production; 
these then are descriptions that do not communicate or share any information with 
the neighboring elements. 

As before, having obtained a precise algebraic definition of unification grammar 
(as, say, a U-system), the question of providing a denotation for it can be directly 
answered. Given a derivation tree x, assume a fixed ordering no, n~ . . . . .  nm of its 
nodes, m > 0, such that no is the root. Now, for 0 < i < m, let Ci be the category of 
node n i, Pi the production associated with n i, or "nil" if n i is terminal, and F(Ci) 
be the feature structure of Ci. We let wx be the vector (F(Co) . . . . .  F(Cm)) of feature 
structure descriptions of the tree. If E0 . . . . .  Em denote the equations associated 
with the productions Pl . . . . .  Pra, the equation associated with the tree is 
Ex = Eo & � 9  & Era. The solution of this equation on wx yields the feature structure 
description at each node of the tree; this solution exists since unification is a 
continuous operation on feature structure descriptions. 

The input elements of this equation are the feature structures associated with 
the terminal nodes of the tree; the individual productions have no feature structures 
associated with them. Notice that this algebraic formulation of the unification problem 
for UGs is independent of the evaluation order for the equation associated with the 
tree. The formulation is also free from the combinatorial aspects of dependency 
graphs and from any recourse to tree traversal algorithms. 

To conclude this section, we note that our somewhat informal treatment of 
feature structures and unification can be formalized further, as in the framework of 
feature unification of Smolka and Ai't-Kaci [35]. The present approach is inspired 
by that of Pereira and Shieber [31], where the semantics is in terms of pairings of 
input strings and feature structures, for each grammatical category, but differs from 
it in the details. 
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4. Expressive capabilities 

In light of the algebraic formulation of their semantics above, it is of interest 
to contrast the expressive capabilities of attribute and unification grammar. We 
consider the domains and interpretation of attribute values, partiality, and the limitations 
inherent to both formalisms as syntax-directed definitional tools. 

4.1. FEATURE STRUCTURE DOMAINS AND TERM INTERPRETATIONS 

It is clear from the formalization of sections 3.1 and 3.2 that the underlying 
semantic algebras of attribute and unification grammar are quite different. While 
the algebra of AG is heterogeneous, since it assumes a collection of possibly 
distinct attribute domains Da, for each attribute a ~ A, the algebra of feature structure 
descriptions in current versions of UG is one-sorted and furthermore restricted to 
a finite initial domain C of constant symbols [31]. Head-Driven Phrase Structure 
Grammar [32] provides an exception to the one-sorted approach to the domain of 
feature structures, using an order-sorted collection of domains used to capture 
regularities in the lexicon and simplify the statement of grammatical rules. Smolka 
and A~'t-Kaci [35] and Siekmann [34] consider order-sorted feature structure descriptions 
and order-sorted unification on this domain. The advantages of a move to order- 
sorted domains lie in a remarkable increase in the expressiveness of the logic, and 
possibly also in the efficiency of unification algorithms. 

The restriction of the initial domain C of constants to a finite set in unification 
grammar is not necessary in its algebraic semantics. It means, however, that one 
of the most venerable data types in computer science, namely the natural numbers, 
cannot be modeled directly; instead, it becomes necessary to use constructor labels 
such as "0" and "s:nat" to obtain a representation. The direct availability of infinite 
data types as the natural numbers is a necessity not only in general purpose computer 
languages, but also in grammatical formalisms; most current linguistic theories use 
indices of various sorts (like binding and agreement), whose domain is the natural 
numbers. While these domains may be represented indirectly by constructor labels 
as noted above, the approach is cumbersome and inefficient, since the space required 
for a representation and the time required for simple operations such as comparison 
for equality are proportional to the size of the representations. 

Another practically important point of difference between AG and UG lies 
in the semantic interpretation of their operator symbols. In AG, for example, an 
expression like "3 + 5", where "+"  is the addition operation, denotes the integer 8, 
and thus would be equivalent to "5 + 3". In UG, as in all languages of uninterpreted 
terms, the same expression "3 + 5", where now "+" is an infix functor interpreted 
as the symbol for addition, denotes itself, although it would also be interpreted as 
8 by its human user. Since "5 + 3" also denotes itself, it is no longer equivalent 
to "3 + 5" (unless the commutativity of addition were stipulated by an axiom). 
Notice that this simple example of interpretation of numerical expressions, and the 
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full interpretation of terms in general, is of interest in linguistic descriptions, and 
particularly in situations where those descriptions are used for natural language 
processing applications, since it is necessary to evaluate the truth of simple copulative 
sentences like "3 + 5 is 8" or "John's father is Paul". The problem of autodenotation 
or basic term interpretation [15] ofaU terms in a language imposes serious practical 
restrictions on any computer language. It must be borne in mind that neither UG 
nor AG are intended as theories of natural language, but rather as formalisms and 
computer languages that should provide the facilities and expressive capabilities in 
which such theories may be stated, s) In fact, pure logic programming, although 
interesting in its own theoretical terms, is not very practical, and one finds in 
languages like PROLO6 operators such as "is", which side-step the logic to evaluate 
expressions made up of variables, constants, and certain allowed operators - so- 
called "computable expressions". (A similar case can be made about the relation 
between pure functional programming and LISP.) 

Finally, we contrast attribute and unification grammar regarding their expressive 
capability for negation and disjunction. Both capabilities are linguistically motivated 
by a wide range of phenomena, as Karttunen [27] has shown, and are used in the 
formal statement of current linguistic theories. In the domain of syntax, for example, 
a grammatical constraint of universal grammar is that "all lexical NPs have Case" 
[9]. If Case is an attribute with domain nom, acc, dat, gen, abl, nil, where the first 
five values are Cases from traditional grammar and nil is used to mark the absence 
of Case on a noun phrase, the grammatical constraint may be captured either as the 
disjunction "(Case = nora v Case = ace v . . .  v Case = abl)", or more elegantly and 
succinctly as the negation " ~ C a s e  = nil", associated with every lexical NP. 

Negation and disjunction are commonly used in attribute grammar, in productions 
with conditions (cf. section 2.1). Such conditions are assimilated to synthesized 
attributes, which must evaluate to "true" for the application of the production to be 
valid. Like all expressions in attribute grammar, an attribute condition cannot be 
evaluated until all attribute values on which it depends are known (value semantics) 
or sufficient to determine the value of the condition (lazy semantics). The mechanism 
for the evaluation of conditions is thus directly built into the formalism. Another 
common use of negation and disjunction in AG is in conditional expressions such 
as " i fp  then ej else e2" in attribution rules, where p is a Boolean condition and ej 
and e2 are expressions; these greatly enhance the expressive power of the formalism 
and are just syntactic sugar for "p & e~ v ~ p  & e2". 

Negation and disjunction are not commonly found in current unification- 
based formalisms or systems, except in some as that described in [27]. Disjunctive 
specification of feature values is, however, explicitly assumed in theories like 

s) HPSG assumes in its inventory of  formal tools, in addition to unification, the notion of functionally 
dependent values. This is a device by which the value o f  a given attribute in a feature structure may 
be defined as a function of  the values of  two or more other attributes in the feature structure. The 
intent here is that the function symbols are fully interpreted [32]. 
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HPSG [32] and LFG [2]. Disjunction has been shown to be the source of NP- 
completeness for the consistency problem of feature structure descriptions [24]. 

4.2. PARTIALITY 

There is another aspect in the interpretation of feature structures. As they 
were defined in sections 2.2 and 3.2, feature structures are finite objects of label- 
value pairs with no denotation assigned to them. However, one important fact about 
their interpretation in UG is that feature structures encode, in the label-value pairs, 
partial linguistic information about fully specified linguistic objects. In this regard, 
feature structures may be traced back to the symbols used in phonological description 
or the "complex symbols" of Chomsky's Extended Standard Theory [7]. Feature 
structures are then partial descriptions of objects in an underlying semantic domain, 
and their interpretation may be made in terms of sets of objects in the underlying 
domain or as elements participating in a partial order [31]. 

More generally, feature structures are important in knowledge representation 
and other new computer science applications as a means to represent taxonomically 
organized data. In one approach [35], the data are organized into feature types, 
which in turn are organized by subtyping and whose elements are records. Every 
feature type defines a set of features corresponding to the fields of its record 
elements. A feature structure (feature term) is used to denote the elements of a 
feature type, and as such is a partial description of the objects in the type. As we 
have noted, this order-sorted algebraic approach to data types is used in HPSG [32] 
to define a hierarchy of lexical types, which permits an efficient organization of 
lexical information in the theory, and a major simplification and elimination of 
redundancy in its statement. 

The notion of partiality does not exist and unfortunately cannot be captured 
directly in attribute grammar. 9) The reason has to do with the fact that the attribute 
set A(X) associated with each symbol X E N u T of the grammar is fixed and 
defined in advance by the grammar. Furthermore, the attribute grammar is well 
defined if it is complete and consistent, i.e. if it defines the value of each attribute 
of X in each occurrence of X in a derivation, and if it additionally defines the value 
of each such attribute at most once. We may think of each attribute symbol 
X[X.a~ . . . . .  X.an] in a derivation, ai ~ A(X), as a record and the set A(X) as the 
definition of the fields of this record. 

An important empirical question that deserves attention in linguistic applications, 
however, is whether the description of a given linguistic object in a complete 
linguistic analysis can be partial in the above sense (i.e. be unspecified for some 

S)The notion can always be captured indirectly where required, by means of an attribute over the domain 
of feature structures of the needed type, and unification as the required operation. Notice that due to 
its extremely general formulation, unification is always a valid and plausible primitive attribution 
operation in attribute grammar. 
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of the features that define the object). If this is not the case, then a formalism that 
requires all fields of an object to be present and defined in each analysis has some 
clear advantages from a software engineering point of view. 

4.3. PRINCIPLE-BASED AND SYNTAX-DIRECTED DEFINITIONS 

This is one respect in which attribute and unification grammar are very much 
alike. In both cases, attribute values or feature structure descriptions are defined in 
a syntax-directed manner, by equations associated with the productions in the grammar. 
Both are additionally declarative formalisms, since the attribute valuation for a 
given derivation is completely independent of the order in which the productions 
are applied in the derivation. In attribute grammar there are, however, constraints 
in the order in which the equations may be solved, dictated by the data dependencies 
between them. These two facts, in spite of the important differences noted in the 
previous two subsections, make attribute and unification grammar closely related; 
both are syntax-directed declarative grammatical formalisms. 

Since Chomsky's [8] "Remarks on Nominalization", there has been a move 
in linguistic theory and in the development of new formalisms for linguistic description 
from intricate rule systems with conditions on the applicaffons of rules, to interacting 
systems of principles, which state well-formedness conditions on the representations 
defined by the rules [9]. l~ This methodological shift from "rule-based grammars" 
to "principle-based grammars" [1] may be seen clearly in Government-binding 
(GB) theory, Lexical-Functional Grammar (LFG), Generalized Phrase Structure 
Grammar (GPSG), and Head-Driven Phrase Structure Grammar (HPSG), and its 
theoretical objective is to move away from merely descriptively adequate grammars 
for particular (natural) languages to explanatorily adequate ones. On the notion of 
explanatory adequacy, the reader is referred to [7] and [10]. 

The language in which the principles in a principle-based grammar are couched 
is usually a language with terms and notation that may be used to refer to the 
representations defined by the (rules of the) grammar. Thus, we find terms that refer 
to nodes and relations between nodes of derivation trees, and to attributes and 
relations between attributes at nodes of trees. Examples of these principles include 
the Case filter and Binding axioms in GB theory, the Head Feature Convention and 
Foot Feature Principle in GPSG, their equivalents in HPSG, and various principles 
in LFG. While some of these principles are merely "syntactic sugar" that state 
general conditions that may be complied directly into the rules of a syntax-directed 
formalism like attribute or unification grammar, others are not, since they span 
nodes in a representation which may be arbitrarily far away. Examples of the former 
include the Case filter in GB theory, reviewed in section 4.1, and most principles 

lo) We shall not enter here into the distinction between "rules" and "principles". For a more extended 
discussion of this and other matters, see [30] and [2]. 
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in GPSG, LFG, and HPSG. For example, the Case filter may be translated into an 
attribute condition "if lexical then ~ Case = nil", associated with each NP rule in 
the grammar. Examples of the latter in GB theory include the Binding axioms and 
all principles that use the notion of government between nodes (the Empty Category 
Principle and Chain well-formedness principles, for example). Capturing principles 
with "unbounded" domains in a syntax-directed formalism undoubtedly requires the 
introduction of auxiliary attributes or mechanisms that locally capture relations 
between certain nodes or attributes in a derivation; in this regard, see [12] on chain 
formation in GB theory, [17] on the use of the "SLASH" feature in GPSG, [23] on 
functional uncertainty in LFG, and [32] on the use of the "SLASH" feature in 
HPSG. 

To conclude this analysis of expressive capabilities in attribute and unification 
grammar and put the two grammatical formalisms in perspective, we see that both, 
as syntax-directed formalisms, have shortcomings as underlying frameworks for 
principle-based descriptions. The work of Berwick [2], Johnson [22], and Stabler [37] 
for. Government-binding theory, and of Gazdar et al. [17] and Pollard and Sag [32] 
for unification-based theories in the direction of overcoming this problem is very 
welcome. 

5. Computational complexity and implementability 

One of the benefits associated with the algebraic characterization we have 
seen of attribute and unification grammar is that it now allows a careful study of 
their computational properties. In this section, we comment on computational complexity 
and implementability issues for AG and UG, including decidability, parsing, attribute 
evaluation, and feature unification. 

5.1. DECIDABILITY AND COMPLEXITY 

Attribute and unification grammar are extensions of context-free grammar 
with the ability to encode unrestricted amounts of information in their attribution. 
This makes the decidability problem for both formalisms dependent upon the degree 
of ambiguity of the underlying context-free grammar. 

PROPOSmON 

Attribute and unification grammar are decidable if the underlying context- 
free grammar is cycle-free - i.e. if it is finitely ambiguous. 

Proof of this proposition may be made by reduction of a Turing machine to 
an attribute or a unification grammar. The reduction uses the attribution of the 
grammar symbols to encode the tape of the machine, and is possible just in the case 
the base grammar is cyclic. Detailed proofs are found in [13] for AGs and [15] for 
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definite-clause programs (a formalism closely related to UG). The property of 
cycle-freeness has also been called "offline parsability" by Pereira and Warren [30], 
and used to show that LFG parsing is decidable under this condition [2]. 11) 

Once we restrict our attention to cycle-free grammars to consider the added 
complexity of attribute evaluation or unification to the parsing process, some further 
considerations become necessary. First, as Church and Patil [11 ] have shown, the 
degree of ambiguity of a cycle-free grammar need not be bounded and may grow 
exponentially in the length of the input string; ambiguity of this sort is in fact quite 
common in natural language, as in the problem of prepositional phrase attachment. 
Since each different derivation of the input may lead to a different attribute evaluation, 
it is not very revealing to consider the added complexity on this already exponential 
problem. Hence, we restrict our attention to attribute evaluation on only one of the 
possible derivations. The second consideration to be made, in the case of attribute 
grammar, is that the complexity added to the parsing process is at least that of the 
primitive attribution functions used in the grammar. Hence, the complexity added 
should be given as a function of that in the attribution functions. For unification 
grammar, given that unification is the sole attribution operation used, the complexity 
result can directly take this into account. 

In estimating the added complexity of attribute evaluation or unification on 
a derivation, we take as a basis the fact that the length of any derivation in a cycle- 
free grammar is linearly bounded by n, the length of the input string. If we let ft 
be a function that bounds the size of each attributed term associated with a symbol 
in the derivation, as a function of n, and fA a function that bounds the complexity 
of the attribution functions as a function of the arguments involved, we can see that 
the size of the attributed symbols in the derivation is at worst ft(n) and hence that 
the complexity of evaluating an attribution function on these symbols is at worst 
fA(ft(n)). Since the number of attributed symbols in the derivation is proportional 
to the length of the derivation (i.e. to n), we conclude that the complexity of the 
attributed derivation is O(n*ft(n))). In contrast, the complexity of a simple context- 
free derivation is O(n). 

The remarks of the preceding paragraph are valid for attribute and unification 
grammar. Hence, the relative complexities of the two formalisms depend on the 
characteristics of their bounding functions ft and fA. For unification grammar, the 
size of the terms is linearly related to the length of the derivation - i.e. ft(n) = O(n);12) 
furthermore, the complexity of unification is linear in the size of its arguments, for 

tt) HPSG has recently been shown to be undeciable, this time not due to properties of the base grammar, 
but due to the introduction of lexieal rules and their ability to encode unrestricted amounts of 
information in the attribution of the symbols generated [4]. 

12) Once we consider adding the HPSG notion of functionally dependent values to the basic unification 
formalism [32], the noted linear relation between the size of attributed terms and the length of 
derivations need no longer hold, since it becomes easy to write attribution statements that violate 
that relation. 
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the best algorithms known [34]. Hence, fA(ft(n)) is alSO linear and the complexity 
of the derivation with unification is O(n2). 13) It should be noted that the linear 
unification algorithms tend to be inefficient in practical cases (small terms) due to 
a large overhead in the manipulation of pointer structures, and that a naive unification 
algorithm can be exponential in the worst case. Hence, the complexity of practical 
unification systems can be much higher than the above theoretical result suggests. 

For attribute grammar, the situation is not so clear-cut, given that its attribution 
domains and functions have been left largely unspecified. Thus, in the absence of 
any information or restrictions on the attribution domains and functions, the functions 
ft and fn Can grow arbitrarily quickly. However, it is not reasonable to suppose (or 
require) that ft will grow at most linearly with the length of the input string and that 
fA will also do the same on the size of its arguments, as we have seen is the case 
for unification grammars. In fact, with some noteworthy exceptions, it can be seen 
in current practice and use of attribute grammar the use of rather simple and 
unstructured attribute domains; examples are enumerated types, the integers or 
reals, and simple non-recursive record types. These domains have the property that 
their elements are of a small and constant size, independent of the input length. The 
exceptions can be counted on one hand and include, for example, list, set, or tree 
domains in linguistic applications (e.g. for subcategorization lists or sets of binding 
indices), or the symbol table in a compiler. These have in common that the size of 
their members grows at most linearly with input length. Thus, in contrast to unification 
grammar, we shall expect fA(ft(n)) tO be constant for attribute grammar, so that 
attributed derivations on AGs are O(n) - i . e .  linear on input length. ~4~ 

5.2. PARSING 

Although the parsing problem has been explored at length for attribute and 
unification grammars, it has been done so with different applications in mind. 
Attribute grammar has been oriented since its beginnings primarily towards the 
semantic definition and translation of programming languages. Thus, a common 
requirement on the underlying context-free syntax is that it be unambiguous [40]. 
The grammar is often further restricted to fit a particular style of parsing, such as 
LL, LR, or LALR, and current compiler-writing systems based on attribute grammar 
methodology work with this restriction [26]. 

In contrast, unification-based formalisms and systems have been developed 
purposely with natural language applications in mind. Given that local and global 
ambiguity is a fact of natural languages, unification formalisms often do not 
impose any restriction on their context-free base, and unification systems such as 

t3) An identical result is reported by Pereira and Warren [30] for definite clause grammars. 
14) As stated in the main text, this result is valid only for ft and f^ constant, and for the reasons noted 

above, this is true in practical attribute grammar descriptions. See also section 5.2. 
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PATR-II [33] and the Grammar Development Environment (GDE) of Cambridge 
University [5] employ all-path parsers, such as may be obtained from Earley's [16] 
algorithm or chart parsing techniques. 

The restrictions imposed on the context-free base of attribute grammar are 
not inherent to the formalism and have been made on current systems only for 
practical purposes, to make possible the application of the most efficient context- 
free parsing methods. As we saw in section 3.1, the correctness and weU-definedness 
of an AG is not dependent on the non-ambiguity of its base. Current work by the 
author and by Yellin [42] addresses the problem of ambiguous underlying syntax 
in attribute grammar by an extension of Earley's algorithm or generalized attributed 
parsing. The generalization of LR parsing techniques of Tomita [39] also allows the 
use of a limited form of attribution in grammar rules. The extension of Earley's 
algorithm worked out in [14] does on-line attribute evaluation, allows for ambiguous 
and even cyclic bases, and is sufficient to handle the attribution of S- and L- 
attributed grammars; these are two important subclasses of attribute grammar, which 
may be sufficient to cover important aspects of natural language attribution. Considering 
the generalization of the algorithm to a wider class of attribute grammars will bring 
us to the next section, on attribute evaluation, but first we consider the question of 
computational efficiency in the use of grammatical formalisms in current unificiation- 
based theories of language. 

Questions of computational efficiency in the use of grammatical formalisms 
have special relevance for the analysis of computationally oriented linguistic theories 
and their degree of success. Here, we take the efficiency of an attributed grammatical 
formalism, as used in a particular linguistic theory, as a function of the syntactic 
derivations it provides for the strings in the languages defined by the theory and 
the complexity of the attributed symbols involved in those derivations. The question 
forces a close scrutiny of the syntactic rules and the makeup of the attribution 
posited by the theories in the symbols. In this regard, the use of the unification 
grammar formalism in some current unification-based theories of languages shows 
a clear trend to reduce the role of syntax in language definitions, understood here 
as the role of phrase structure rules in the characterization of the languages defined, 
and a serious redundancy between syntactic and semantic structures in the 
representations defined. 

The trend to reduce the role of syntax is seen most clearly in HPSG [32], 
where the number of phrase structure rules is reduced to an extremely small number 
(perhaps four), and the attribution associated with each lexical sign is used to 
indicate the particular kinds of complement and adjunct constituents that the sign 
selects, and thus semantically constrain the application of the rules. The redundancy 
of syntactic and semantic representation in a theory results from the use of attribution 
to record structurally defined relations. In LFG, for instance, attributes are used to 
represent the grammatical relations between a sign and its complements. Although 
the motivation and details of the analysis provided are subtle, such relations are 
essentially structurally defined and, in fact, in other frameworks such as 
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Chomsky's [7] Extended Standard Theory, they are so. Similarly, HPSG uses attribution 
to record the structurally-defined mother-daughter relations between nodes in a 
derivation tree. In both cases, the size of the resultant attribution in each derivation 
symbol is increased dramatically, being dependent upon the length of the strings 
generated. The balance of the trend noted is unfortunate since, on one hand, the first 
renders virtually useless the various techniques developed for the efficient syntactic 
analysis of context-free languages and, on the other, the second compounds the 
problem by making each step in an attributed derivation more computationally 
expensive, due to the increased size of the attributed representations involved. 

In contrast, attribute grammar definitions of language generally show a more 
balanced approach to the division between syntax and semantics and little redundancy 
between them, thereby lending themselves to more modular and efficient computational 
implementations. 

5.3. ATI'RIBUTE EVALUATION 

Attribute evaluation is one of the most difficult problems of attribute grammar. 
Modulo the problem of syntactic ambiguity in the underlying context-free base 
noted in the previous section, the attribute evaluation problem has been studied and 
solved for major subclasses of AG, as we saw in section 2.1 (e.g. [25]). 

However, the attribute evaluation problem does not seem to show up in 
unification-based formalisms. The reason for this lies in the remarks of section 4.1 
regarding the Herbrand (or basic term) interpretation of all terms (feature structures) 
in UG and the use of unification for the statement of equations between them. This 
virtually eliminates the attribute evaluation problem from the formalism. While in 
AG a simple attribution rule like "X.a ~ Y.b" or "X.a ~ f( . . . .  Y.b . . . .  )" cannot 
be evaluated unless the value of the attribute occurrence Y.b in the right-hand side 
expression is known, the corresponding equation "v --- u" or "v - f( . . . .  u . . . .  )" in 
a unification-based formalism can be evaluated symbolically, even if the value of 
the variable u on the right-hand side is not known. In the latter case, evaluation of 
the equation yields the unification of the structure v with the term u or f (  . . . .  u . . . .  ) 
on the right, which may only be partially instantiated. Since the evaluation of a 
conjunction el & e2 & . . .  & ea of unification equations is order independent, the 
unifications associated with a UG derivation of a given input string can be performed 
in any order, including that in which they are found by the particular parsing 
algorithm used. This is an important advantage of UG, which was in fact used in 
the attribute evaluator of the Government-binding parser in [13]. 

The advantage of symbolic attribute evaluation quickly disappears, however, 
once we consider extending the expressive power of the formalism to include 
negation or disjunction, or the notion of functionally dependent values, as noted in 
section 4.1. In particular, for a negation equation "--,b( . . . .  d . . . .  )" to be evaluated, 
where b is a Boolean predicate that depends on the value of a description d, it is 
necessary to know the relevant facts about d. For otherwise it may be necessary to 



N. Correa, Attribute and unification grammar 101 

enumerate all instances of d over a possibly infinite domain, to verify which satisfy 
the equation. The problem is less severe for disjunction, since now we have to 
consider enumeration only over the alternatives in the disjunction, but it is enough 
to make the evaluation problem for unification with disjunction NP-complete [24].15) 
Finally, notice that in a practical computer language, with computable expressions 
such as arithmetic and string operations over their arguments, it is often required 
that the arguments input to the expression be evaluated before the expression is 
evaluated. In this case, we must also postpone evaluation of the computable expression. 

The above remarks suggest that extension of the basic unification grammar 
formalism to include new facilities like negation, disjunction, and computable 
expressions, which are all linguistically motivated and a necessity in any realistic 
computer language, requires careful analysis and consideration of the data dependencies 
introduced in the representations defined by a given grammatical definition, and the 
development of efficient strategies for the evaluation of the same representations. 
Likewise, theories of language that seek to address the problem of linguistic performance 
must heed the observations of the preceding section regarding the computational 
efficiency of their grammatical descriptions, which must carefully take into account 
the strengths and limitations of the formalism in which they are couched. 

5A. FEATURE UNIFICATION 

From our discussion of feature structure descriptions in section 3.2, it is clear 
that these descriptions are terms in a language with variables. In this interpretation, 
we need to supply an implicit functor of variable arity n _> 0, and selectors (the 
labels in the feature structure description) that serve to identify the argument positions 
in the term. 

Unification of feature structure descriptions under this interpretation is similar 
to standard (one-sorted) unification in logic programming languages. However, 
there is an added dimension of complexity to standard unification. Since feature 
structure descriptions have an implicit functor to which arguments may be added, 
as selectors are added, we must consider the problem of storing and searching 
label-value pairs in a given feature structure description. We consider two basic 
representation strategies for this sort of information. 

One possible representation is representing each feature structure by a vector 
consisting of label-value pairs, for all possible labels, and assuming a fixed order 
for the label set. In this manner, a constant access time can be guaranteed to each 
possible argument of the structure. Since the set L of labels in the grammar may 
be large, and typically each feature structure selects only a small subset of labels, 

15) Kaplan and Zaenen [23] present, within the framework of Lexical Functional Grammar, a treatment 
of long-distance dependencies in natural language that is stated over functional rather than phrase 
structure. The formal account is given by a device "functional uncertainty", that allows the (finite) 
specification of infinite disjunctions. 
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according to its syntactic category or type, this alternative seems too wasteful of 
memory space. Furthermore, unification of two structures would always require 
testing up to I L [ label-value pairs. A second representation of feature structures 
is using lists of label-value pairs. This can be more economical in memory space, 
but since in general the selectors may be added in any order, the list would be 
unordered. Hence, it becomes necessary to consider maintaining the list in order and 
searching on it each time a selector is given. If the list is unordered, searching will 
require on the average s/2 steps, where s is the number of selectors in the feature 
structure. Notice that this shows up in the complexity of the unification algorithm 
as a term dependent on grammar size (but not input string length). 

Several alternatives for the representation of feature structures are used in 
practical systems. In the Cambridge University GDE, the user has the choice between 
feature structure and standard term unification [5]. On the other hand, in the record 
processing language PLNLP of Heidorn [20], the most used labels in the grammar 
are stored in a vector associated with each record, while the others are kept in a 
list. This optimization has a major impact on the efficiency of the record processing 
system. 

6. Conclusion 

Unification is attractive for its elegance and conciseness in the description 
of complex terms and the operations between them, but can easily encourage and 
lead to computationaUy inefficient descriptions when interpreted on a machine. By 
taking similar algebraic characterizations of attribute and unification grammar, the 
present article has allowed us to examine in detail some of the important properties 
and issues in the two formalisms, including their descriptive capabilities, complexity, 
implementability issues and, also importantly, the problems of use of the two formalisms 
in current state-of-the-art. One suggestion that can be made about unification grammar 
is that its rather simple domain of feature structures can be significantly improved 
by turning it into a full order-sorted algebra (of. [35]), and has in fact already been 
claimed for HPSG theory. This has the potential of greatly improving the expressiveness 
of UG and also the computational efficiency of UG systems, although at the expense 
of greater implementation complexity and more carefully crafted grammatical 
descriptions. 

Attribute grammar and unification-based formalisms are closely related syntax- 
directed definitional tools for grammatical description. The implications of this 
close relation and the uses that may be made of it are similar to those obtained from 
the also close relation that has been shown to exist between attribute grammar and 
logic programming [15]. Efficient attribute evaluation methods developed for attribute 
grammar, based on an analysis of the data dependencies determined by the attribution, 
may apply to replace general unification in the execution of logic programs and 
unification formalisms by more specialized and efficient forms of unification. In 
general, however, we have seen that current unification-based theories of languages 
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like Head-driven Phrase Structure Grammar already make demands beyond the 
capabilities of the basic unification grammar formalism, very close to those provided 
by attribute grammar. The conclusion of this study is that attribute grammar is a 
better suited and more highly developed grammatical formalism for the description 
of natural and artificial languages, due to its greater generality, expressive power 
and, also importantly, more efficient computational implementations. 

To bring to an end and to put the present review and analysis of the two 
grammatical formalisms into perspective, we note that attribute and unification 
grammar are more similar than dissimilar grammatical formalisms, and that both 
fall short of the sort of formalisms needed for "principle-based" descriptions of 
language, advocated in current linguistic theory [1,10, 32]. This mode of description 
is increasingly more important for theoretical and computational linguistics, as 
advance is made on the generative (i.e. precise) study of particular languages, and 
research turns to the Port Royal grammarian's conception that "with respect to its 
substance, grammar is one and the same for all languages, though it does vary 
accidentally" (cf. Chomsky, op cit.). 
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